Spaces:
Sleeping
Sleeping
File size: 1,310 Bytes
0751294 17e34a5 0751294 91cbd61 0751294 342a4a2 0751294 90cc1ec af05aa3 342a4a2 af05aa3 24b60d3 91cbd61 24b60d3 af05aa3 31e79df af05aa3 336fd59 af05aa3 d468541 eea64fd 5a61d18 0751294 342a4a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
#**************** IMPORT PACKAGES ********************
import gradio as gr
import numpy as np
import pytesseract as pt
import pdf2image
import os
import tempfile
from fpdf import FPDF
import re
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import os
import pdfkit
import yake
from transformers import AutoTokenizer, AutoModelForPreTraining, AutoModel, AutoConfig
from summarizer import Summarizer,TransformerSummarizer
from transformers import pipelines
nltk.download('punkt')
model_name = 'nlpaueb/legal-bert-base-uncased'
# The setup of huggingface.co
custom_config = AutoConfig.from_pretrained(model_name)
custom_config.output_hidden_states=True
custom_tokenizer = AutoTokenizer.from_pretrained(model_name)
custom_model = AutoModel.from_pretrained(model_name, config=custom_config)
bert_legal_model = Summarizer(custom_model=custom_model, custom_tokenizer=custom_tokenizer)
from zipfile import ZipFile
def zip_to_json(file_obj):
with open(file_obj, 'w') as fh:
fh.write('<content>')
return fh
#def pdf(file_name):
# path = folder_name
# return path
#pageObject.extractText()
iface = gr.Interface(fn = zip_to_json,
inputs = "file", outputs="file" )
if __name__ == "__main__":
iface.launch(share=True) |