Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import nltk | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from fpdf import FPDF | |
from gtts import gTTS | |
from pdfminer.high_level import extract_text | |
from docx import Document | |
from reportlab.lib.pagesizes import letter | |
from reportlab.pdfgen import canvas | |
# Clear any potentially corrupted data and ensure correct download | |
nltk.data.path.append("/home/user/nltk_data") | |
nltk.download('punkt') | |
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") | |
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") | |
# Function to split text into chunks | |
def split_text(text, max_chunk_size=1024): | |
sentences = nltk.sent_tokenize(text) # Use NLTK's sentence tokenizer | |
chunks = [] | |
chunk = "" | |
for sentence in sentences: | |
if len(chunk) + len(sentence) <= max_chunk_size: | |
chunk += sentence + " " | |
else: | |
chunks.append(chunk.strip()) | |
chunk = sentence + " " | |
if chunk: | |
chunks.append(chunk.strip()) | |
return chunks | |
def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"): | |
doc = Document(docx_file) | |
full_text = [] | |
for para in doc.paragraphs: | |
full_text.append(para.text) | |
pdf = canvas.Canvas(output_pdf, pagesize=letter) | |
pdf.setFont("Helvetica", 12) | |
text = pdf.beginText(40, 750) | |
for line in full_text: | |
text.textLine(line) | |
pdf.drawText(text) | |
pdf.save() | |
return output_pdf | |
# Main processing function with text chunking | |
def pdf_to_text(text, PDF, min_length=80): | |
try: | |
file_extension = os.path.splitext(PDF.name)[1].lower() | |
if file_extension == '.docx': | |
pdf_file_path = docx_to_pdf(PDF.name) | |
text = extract_text(pdf_file_path) | |
elif file_extension == '.pdf' and text == "": | |
text = extract_text(PDF.name) | |
chunks = split_text(text) | |
summarized_text = "" | |
for chunk in chunks: | |
inputs = tokenizer([chunk], max_length=1024, truncation=True, return_tensors="pt") | |
min_length = int(min_length) | |
summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=min_length, max_length=min_length + 400) | |
output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0] | |
summarized_text += output_text + "\n\n" | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Times", size=12) | |
pdf.multi_cell(190, 10, txt=summarized_text, align='C') | |
pdf_output_path = "legal.pdf" | |
pdf.output(pdf_output_path) | |
audio_output_path = "legal.wav" | |
tts = gTTS(text=summarized_text, lang='en', slow=False) | |
tts.save(audio_output_path) | |
return audio_output_path, summarized_text, pdf_output_path | |
except Exception as e: | |
return None, f"An error occurred: {str(e)}", None | |
def process_sample_document(min_length=80): | |
sample_document_path = "Marbury v. Madison.pdf" | |
with open(sample_document_path, "rb") as f: | |
return pdf_to_text("", f, min_length) | |
with gr.Blocks() as iface: | |
with gr.Row(): | |
process_sample_button = gr.Button("Summarize Marbury v. Madison Case Pre-Uploaded") | |
text_input = gr.Textbox(label="Input Text") | |
file_input = gr.File(label="Upload PDF or DOCX") | |
slider = gr.Slider(minimum=10, maximum=400, step=10, value=80, label="Summary Minimum Length") | |
audio_output = gr.Audio(label="Generated Audio") | |
summary_output = gr.Textbox(label="Generated Summary") | |
pdf_output = gr.File(label="Summary PDF") | |
process_sample_button.click(fn=process_sample_document, inputs=slider, outputs=[audio_output, summary_output, pdf_output]) | |
file_input.change(fn=pdf_to_text, inputs=[text_input, file_input, slider], outputs=[audio_output, summary_output, pdf_output]) | |
if __name__ == "__main__": | |
iface.launch() | |