lincolnlegal / app.py
arithescientist's picture
Update app.py
e9536eb
raw
history blame
1.41 kB
#**************** IMPORT PACKAGES ********************
import gradio as gr
import numpy as np
import pytesseract as pt
import pdf2image
import os
import tempfile
from fpdf import FPDF
import re
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import os
import pdfkit
import yake
from transformers import AutoTokenizer, AutoModelForPreTraining, AutoModel, AutoConfig
from summarizer import Summarizer,TransformerSummarizer
from transformers import pipelines
nltk.download('punkt')
model_name = 'nlpaueb/legal-bert-base-uncased'
# The setup of huggingface.co
custom_config = AutoConfig.from_pretrained(model_name)
custom_config.output_hidden_states=True
custom_tokenizer = AutoTokenizer.from_pretrained(model_name)
custom_model = AutoModel.from_pretrained(model_name, config=custom_config)
bert_legal_model = Summarizer(custom_model=custom_model, custom_tokenizer=custom_tokenizer)
from zipfile import ZipFile
from gtts import gTTS
from pdfminer.high_level import extract_text
def pdf_to_text(file_obj):
text = extract_text(file_obj.name)
myobj = gTTS(text=text, lang='en', slow=False)
myobj.save("test.wav")
return 'test.wav'
# path = folder_name
# return path
#pageObject.extractText()
iface = gr.Interface(fn = pdf_to_text,
inputs = "file", outputs="audio" )
if __name__ == "__main__":
iface.launch(share=True)