Ari commited on
Commit
204d8e4
1 Parent(s): abdc1ac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -11
app.py CHANGED
@@ -1,5 +1,7 @@
1
  import gradio as gr
2
  import os
 
 
3
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
4
  from fpdf import FPDF
5
  from gtts import gTTS
@@ -8,20 +10,33 @@ from docx import Document
8
  from reportlab.lib.pagesizes import letter
9
  from reportlab.pdfgen import canvas
10
 
 
11
  tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
12
  model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
13
 
14
- # Function to split text into chunks based on token length
15
- def split_text_by_tokens(text, max_length=1024):
16
- tokens = tokenizer.encode(text, return_tensors="pt", truncation=False)
17
- total_length = tokens.shape[1]
 
 
 
 
18
  chunks = []
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- # Loop through the text, grabbing chunks of tokens
21
- for i in range(0, total_length, max_length):
22
- chunk_tokens = tokens[:, i:i+max_length]
23
- chunk_text = tokenizer.decode(chunk_tokens[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
24
- chunks.append(chunk_text)
25
 
26
  return chunks
27
 
@@ -42,18 +57,21 @@ def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"):
42
  pdf.save()
43
  return output_pdf
44
 
45
- # Main processing function with token-based text chunking
46
  def pdf_to_text(text, PDF, min_length=80):
47
  try:
48
  file_extension = os.path.splitext(PDF.name)[1].lower()
49
 
 
50
  if file_extension == '.docx':
51
  pdf_file_path = docx_to_pdf(PDF.name)
52
  text = extract_text(pdf_file_path)
 
53
  elif file_extension == '.pdf' and text == "":
54
  text = extract_text(PDF.name)
55
 
56
- chunks = split_text_by_tokens(text)
 
57
  summarized_text = ""
58
 
59
  for chunk in chunks:
@@ -63,6 +81,7 @@ def pdf_to_text(text, PDF, min_length=80):
63
  output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
64
  summarized_text += output_text + "\n\n"
65
 
 
66
  pdf = FPDF()
67
  pdf.add_page()
68
  pdf.set_font("Times", size=12)
@@ -70,6 +89,7 @@ def pdf_to_text(text, PDF, min_length=80):
70
  pdf_output_path = "legal.pdf"
71
  pdf.output(pdf_output_path)
72
 
 
73
  audio_output_path = "legal.wav"
74
  tts = gTTS(text=summarized_text, lang='en', slow=False)
75
  tts.save(audio_output_path)
@@ -79,12 +99,14 @@ def pdf_to_text(text, PDF, min_length=80):
79
  except Exception as e:
80
  return None, f"An error occurred: {str(e)}", None
81
 
 
82
  def process_sample_document(min_length=80):
83
  sample_document_path = "Marbury v. Madison.pdf"
84
 
85
  with open(sample_document_path, "rb") as f:
86
  return pdf_to_text("", f, min_length)
87
 
 
88
  with gr.Blocks() as iface:
89
  with gr.Row():
90
  process_sample_button = gr.Button("Summarize Marbury v. Madison Case Pre-Uploaded")
 
1
  import gradio as gr
2
  import os
3
+ import re
4
+ import numpy as np
5
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
6
  from fpdf import FPDF
7
  from gtts import gTTS
 
10
  from reportlab.lib.pagesizes import letter
11
  from reportlab.pdfgen import canvas
12
 
13
+ # Load the models and tokenizer
14
  tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
15
  model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
16
 
17
+ # Function to chunk text into sentence-based chunks
18
+ def chunk_text(text, max_token_len=1024):
19
+ # Split text into sentences
20
+ sentences = [sent.strip() + '.' for sent in re.split(r'(?<!\d)\.\s', text) if len(sent) > 1]
21
+ token_lengths = [len(tokenizer.tokenize(sent)) for sent in sentences]
22
+
23
+ # Initialize chunking
24
+ chunk_size = max_token_len
25
  chunks = []
26
+ current_chunk = []
27
+ current_length = 0
28
+
29
+ for sent, length in zip(sentences, token_lengths):
30
+ if current_length + length <= chunk_size:
31
+ current_chunk.append(sent)
32
+ current_length += length
33
+ else:
34
+ chunks.append(" ".join(current_chunk))
35
+ current_chunk = [sent]
36
+ current_length = length
37
 
38
+ if current_chunk:
39
+ chunks.append(" ".join(current_chunk))
 
 
 
40
 
41
  return chunks
42
 
 
57
  pdf.save()
58
  return output_pdf
59
 
60
+ # Main processing function using sentence-based chunking
61
  def pdf_to_text(text, PDF, min_length=80):
62
  try:
63
  file_extension = os.path.splitext(PDF.name)[1].lower()
64
 
65
+ # If DOCX, convert to PDF
66
  if file_extension == '.docx':
67
  pdf_file_path = docx_to_pdf(PDF.name)
68
  text = extract_text(pdf_file_path)
69
+ # If PDF, extract text
70
  elif file_extension == '.pdf' and text == "":
71
  text = extract_text(PDF.name)
72
 
73
+ # Split text into chunks based on sentence boundaries
74
+ chunks = chunk_text(text)
75
  summarized_text = ""
76
 
77
  for chunk in chunks:
 
81
  output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
82
  summarized_text += output_text + "\n\n"
83
 
84
+ # Save summarized text to PDF
85
  pdf = FPDF()
86
  pdf.add_page()
87
  pdf.set_font("Times", size=12)
 
89
  pdf_output_path = "legal.pdf"
90
  pdf.output(pdf_output_path)
91
 
92
+ # Convert summarized text to audio
93
  audio_output_path = "legal.wav"
94
  tts = gTTS(text=summarized_text, lang='en', slow=False)
95
  tts.save(audio_output_path)
 
99
  except Exception as e:
100
  return None, f"An error occurred: {str(e)}", None
101
 
102
+ # Preloaded document processor
103
  def process_sample_document(min_length=80):
104
  sample_document_path = "Marbury v. Madison.pdf"
105
 
106
  with open(sample_document_path, "rb") as f:
107
  return pdf_to_text("", f, min_length)
108
 
109
+ # Gradio interface
110
  with gr.Blocks() as iface:
111
  with gr.Row():
112
  process_sample_button = gr.Button("Summarize Marbury v. Madison Case Pre-Uploaded")