Spaces:
Sleeping
Sleeping
arithescientist
commited on
Commit
·
aad84a4
1
Parent(s):
a39d635
Update app.py
Browse files
app.py
CHANGED
@@ -23,25 +23,33 @@ from pdfminer.high_level import extract_text
|
|
23 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
24 |
nltk.download('punkt')
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
# The setup of huggingface.co
|
29 |
-
file_obj = PDF
|
30 |
-
#n = int(Percent.replace('%', ''))
|
31 |
-
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
32 |
-
|
33 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
|
34 |
-
|
35 |
-
text = extract_text(file_obj.name)
|
36 |
-
|
37 |
-
inputs = tokenizer([text], max_length=1024, return_tensors="pt")
|
38 |
-
|
39 |
-
Min = int(Min)
|
40 |
-
# Generate Summary
|
41 |
-
summary_ids = model.generate(inputs["input_ids"], num_beams=2,min_length=Min, max_length=Min+1000)
|
42 |
-
output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
43 |
|
|
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
#output_text= bert_legal_model(text, min_length = 8, ratio = 0.05)
|
47 |
|
@@ -62,12 +70,10 @@ def pdf_to_text(PDF, Min):
|
|
62 |
return "legal.wav", output_text, "legal.pdf"
|
63 |
|
64 |
|
65 |
-
# path = folder_name
|
66 |
-
|
67 |
# return path
|
68 |
#pageObject.extractText()
|
69 |
iface = gr.Interface(fn = pdf_to_text,
|
70 |
-
inputs =["file", "text"], outputs=["audio","text", "file"] )
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
iface.launch(share=True)
|
|
|
23 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
24 |
nltk.download('punkt')
|
25 |
|
26 |
+
model_name = 'nlpaueb/legal-bert-base-uncased'
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
|
30 |
|
31 |
+
def pdf_to_text(text, PDF):
|
32 |
+
Min = int(20)
|
33 |
+
if text == "":
|
34 |
+
# The setup of huggingface.co
|
35 |
+
file_obj = PDF
|
36 |
+
#n = int(Percent.replace('%', ''))
|
37 |
+
|
38 |
+
text = extract_text(file_obj.name)
|
39 |
+
inputs = tokenizer([text], max_length=1024, return_tensors="pt")
|
40 |
+
|
41 |
+
Min = int(Min)
|
42 |
+
# Generate Summary
|
43 |
+
summary_ids = model.generate(inputs["input_ids"], num_beams=2,min_length=Min, max_length=Min+1000)
|
44 |
+
output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
45 |
+
|
46 |
+
else:
|
47 |
+
inputs = tokenizer([text], max_length=1024, return_tensors="pt")
|
48 |
+
# Generate Summary
|
49 |
+
|
50 |
+
summary_ids = model.generate(inputs["input_ids"], num_beams=2,min_length=Min, max_length=Min+1000)
|
51 |
+
output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
52 |
+
|
53 |
|
54 |
#output_text= bert_legal_model(text, min_length = 8, ratio = 0.05)
|
55 |
|
|
|
70 |
return "legal.wav", output_text, "legal.pdf"
|
71 |
|
72 |
|
|
|
|
|
73 |
# return path
|
74 |
#pageObject.extractText()
|
75 |
iface = gr.Interface(fn = pdf_to_text,
|
76 |
+
inputs =["text", "file", "text"], outputs=["audio","text", "file"] )
|
77 |
|
78 |
if __name__ == "__main__":
|
79 |
iface.launch(share=True)
|