Ari commited on
Commit
d9d6a38
·
verified ·
1 Parent(s): 5e1f326

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -11
app.py CHANGED
@@ -11,11 +11,9 @@ from reportlab.pdfgen import canvas
11
 
12
  nltk.download('punkt')
13
 
14
- # Load the models and tokenizers
15
  tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
16
  model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
17
 
18
- # Convert DOCX to PDF using reportlab
19
  def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"):
20
  doc = Document(docx_file)
21
  full_text = []
@@ -33,8 +31,7 @@ def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"):
33
  pdf.save()
34
  return output_pdf
35
 
36
- # Process input file (PDF or DOCX)
37
- def pdf_to_text(text, PDF, min_length=20):
38
  try:
39
  file_extension = os.path.splitext(PDF.name)[1].lower()
40
 
@@ -47,8 +44,8 @@ def pdf_to_text(text, PDF, min_length=20):
47
  inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt")
48
  min_length = int(min_length)
49
 
50
- summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=min_length, max_length=min_length+1000)
51
- output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
52
 
53
  pdf = FPDF()
54
  pdf.add_page()
@@ -66,21 +63,19 @@ def pdf_to_text(text, PDF, min_length=20):
66
  except Exception as e:
67
  return None, f"An error occurred: {str(e)}", None
68
 
69
- # Preloaded document handler
70
- def process_sample_document(min_length=20):
71
  sample_document_path = "Marbury v. Madison.pdf"
72
 
73
  with open(sample_document_path, "rb") as f:
74
  return pdf_to_text("", f, min_length)
75
 
76
- # Gradio interface
77
  with gr.Blocks() as iface:
78
  with gr.Row():
79
- process_sample_button = gr.Button("Summarize Pre-Uploaded Marbury v. Madison Case Documented")
80
 
81
  text_input = gr.Textbox(label="Input Text")
82
  file_input = gr.File(label="Upload PDF or DOCX")
83
- slider = gr.Slider(minimum=10, maximum=100, step=10, value=100, label="Summary Minimum Length")
84
 
85
  audio_output = gr.Audio(label="Generated Audio")
86
  summary_output = gr.Textbox(label="Generated Summary")
 
11
 
12
  nltk.download('punkt')
13
 
 
14
  tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
15
  model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
16
 
 
17
  def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"):
18
  doc = Document(docx_file)
19
  full_text = []
 
31
  pdf.save()
32
  return output_pdf
33
 
34
+ def pdf_to_text(text, PDF, min_length=80): # Increase default min_length by 4 times
 
35
  try:
36
  file_extension = os.path.splitext(PDF.name)[1].lower()
37
 
 
44
  inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt")
45
  min_length = int(min_length)
46
 
47
+ summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=min_length, max_length=min_length + 4000)
48
+ output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # Set explicitly
49
 
50
  pdf = FPDF()
51
  pdf.add_page()
 
63
  except Exception as e:
64
  return None, f"An error occurred: {str(e)}", None
65
 
66
+ def process_sample_document(min_length=80):
 
67
  sample_document_path = "Marbury v. Madison.pdf"
68
 
69
  with open(sample_document_path, "rb") as f:
70
  return pdf_to_text("", f, min_length)
71
 
 
72
  with gr.Blocks() as iface:
73
  with gr.Row():
74
+ process_sample_button = gr.Button("Summarize Marbury v. Madison Case Pre-Uploaded")
75
 
76
  text_input = gr.Textbox(label="Input Text")
77
  file_input = gr.File(label="Upload PDF or DOCX")
78
+ slider = gr.Slider(minimum=10, maximum=400, step=10, value=80, label="Summary Minimum Length") # Default value set to 80
79
 
80
  audio_output = gr.Audio(label="Generated Audio")
81
  summary_output = gr.Textbox(label="Generated Summary")