Ari commited on
Commit
ec7dfc2
1 Parent(s): f6ccaae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -27
app.py CHANGED
@@ -11,23 +11,21 @@ from reportlab.pdfgen import canvas
11
 
12
  nltk.download('punkt')
13
 
14
- # Load the models and tokenizers once, not every time the function is called
15
  tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
16
  model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
17
 
18
- # Function to convert DOCX to PDF using reportlab (UTF-8 compatible)
19
  def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"):
20
  doc = Document(docx_file)
21
  full_text = []
22
  for para in doc.paragraphs:
23
  full_text.append(para.text)
24
 
25
- # Create a PDF and write the extracted text using reportlab
26
  pdf = canvas.Canvas(output_pdf, pagesize=letter)
27
  pdf.setFont("Helvetica", 12)
28
 
29
- # Write text line by line
30
- text = pdf.beginText(40, 750) # Start position on the page
31
  for line in full_text:
32
  text.textLine(line)
33
 
@@ -35,29 +33,23 @@ def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"):
35
  pdf.save()
36
  return output_pdf
37
 
38
- # Main processing function
39
  def pdf_to_text(text, PDF, min_length=20):
40
  try:
41
- # Determine whether the input is a PDF or DOCX
42
  file_extension = os.path.splitext(PDF.name)[1].lower()
43
 
44
- # If DOCX, first convert it to PDF
45
  if file_extension == '.docx':
46
- pdf_file_path = docx_to_pdf(PDF.name) # Convert DOCX to PDF
47
- text = extract_text(pdf_file_path) # Extract text from the newly created PDF
48
- # If PDF, extract text from it directly
49
  elif file_extension == '.pdf' and text == "":
50
  text = extract_text(PDF.name)
51
 
52
- # Tokenize text
53
- inputs = tokenizer([text], max_length=1024, return_tensors="pt")
54
  min_length = int(min_length)
55
 
56
- # Generate summary
57
  summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=min_length, max_length=min_length+1000)
58
- output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
59
 
60
- # Save summarized text to PDF
61
  pdf = FPDF()
62
  pdf.add_page()
63
  pdf.set_font("Times", size=12)
@@ -65,7 +57,6 @@ def pdf_to_text(text, PDF, min_length=20):
65
  pdf_output_path = "legal.pdf"
66
  pdf.output(pdf_output_path)
67
 
68
- # Convert summarized text to audio
69
  audio_output_path = "legal.wav"
70
  tts = gTTS(text=output_text, lang='en', slow=False)
71
  tts.save(audio_output_path)
@@ -75,35 +66,27 @@ def pdf_to_text(text, PDF, min_length=20):
75
  except Exception as e:
76
  return None, f"An error occurred: {str(e)}", None
77
 
78
- # Function to process the preloaded document
79
  def process_sample_document(min_length=20):
80
- # Replace this with the path to your preloaded legal document (PDF)
81
  sample_document_path = "Marbury v. Madison.pdf"
82
 
83
- # Simulate file-like object for Gradio
84
  with open(sample_document_path, "rb") as f:
85
  return pdf_to_text("", f, min_length)
86
 
87
  # Gradio interface
88
  with gr.Blocks() as iface:
89
- # Create a button to process the sample document
90
  with gr.Row():
91
- process_sample_button = gr.Button("Process Sample Legal Document")
92
 
93
- # Create the regular input interface
94
  text_input = gr.Textbox(label="Input Text")
95
  file_input = gr.File(label="Upload PDF or DOCX")
96
  slider = gr.Slider(minimum=10, maximum=100, step=10, value=20, label="Summary Minimum Length")
97
 
98
- # Outputs
99
  audio_output = gr.Audio(label="Generated Audio")
100
  summary_output = gr.Textbox(label="Generated Summary")
101
  pdf_output = gr.File(label="Summary PDF")
102
 
103
- # Define the action for the button click to process the preloaded document
104
  process_sample_button.click(fn=process_sample_document, inputs=slider, outputs=[audio_output, summary_output, pdf_output])
105
-
106
- # Define the action for the regular file processing
107
  file_input.change(fn=pdf_to_text, inputs=[text_input, file_input, slider], outputs=[audio_output, summary_output, pdf_output])
108
 
109
  if __name__ == "__main__":
 
11
 
12
  nltk.download('punkt')
13
 
14
+ # Load the models and tokenizers
15
  tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
16
  model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
17
 
18
+ # Convert DOCX to PDF using reportlab
19
  def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"):
20
  doc = Document(docx_file)
21
  full_text = []
22
  for para in doc.paragraphs:
23
  full_text.append(para.text)
24
 
 
25
  pdf = canvas.Canvas(output_pdf, pagesize=letter)
26
  pdf.setFont("Helvetica", 12)
27
 
28
+ text = pdf.beginText(40, 750)
 
29
  for line in full_text:
30
  text.textLine(line)
31
 
 
33
  pdf.save()
34
  return output_pdf
35
 
36
+ # Process input file (PDF or DOCX)
37
  def pdf_to_text(text, PDF, min_length=20):
38
  try:
 
39
  file_extension = os.path.splitext(PDF.name)[1].lower()
40
 
 
41
  if file_extension == '.docx':
42
+ pdf_file_path = docx_to_pdf(PDF.name)
43
+ text = extract_text(pdf_file_path)
 
44
  elif file_extension == '.pdf' and text == "":
45
  text = extract_text(PDF.name)
46
 
47
+ inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt")
 
48
  min_length = int(min_length)
49
 
 
50
  summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=min_length, max_length=min_length+1000)
51
+ output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
52
 
 
53
  pdf = FPDF()
54
  pdf.add_page()
55
  pdf.set_font("Times", size=12)
 
57
  pdf_output_path = "legal.pdf"
58
  pdf.output(pdf_output_path)
59
 
 
60
  audio_output_path = "legal.wav"
61
  tts = gTTS(text=output_text, lang='en', slow=False)
62
  tts.save(audio_output_path)
 
66
  except Exception as e:
67
  return None, f"An error occurred: {str(e)}", None
68
 
69
+ # Preloaded document handler
70
  def process_sample_document(min_length=20):
 
71
  sample_document_path = "Marbury v. Madison.pdf"
72
 
 
73
  with open(sample_document_path, "rb") as f:
74
  return pdf_to_text("", f, min_length)
75
 
76
  # Gradio interface
77
  with gr.Blocks() as iface:
 
78
  with gr.Row():
79
+ process_sample_button = gr.Button("Summarize Pre-Uploaded Marbury v. Madison Case Documented")
80
 
 
81
  text_input = gr.Textbox(label="Input Text")
82
  file_input = gr.File(label="Upload PDF or DOCX")
83
  slider = gr.Slider(minimum=10, maximum=100, step=10, value=20, label="Summary Minimum Length")
84
 
 
85
  audio_output = gr.Audio(label="Generated Audio")
86
  summary_output = gr.Textbox(label="Generated Summary")
87
  pdf_output = gr.File(label="Summary PDF")
88
 
 
89
  process_sample_button.click(fn=process_sample_document, inputs=slider, outputs=[audio_output, summary_output, pdf_output])
 
 
90
  file_input.change(fn=pdf_to_text, inputs=[text_input, file_input, slider], outputs=[audio_output, summary_output, pdf_output])
91
 
92
  if __name__ == "__main__":