import gradio as gr import os import nltk from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from fpdf import FPDF from gtts import gTTS from pdfminer.high_level import extract_text from docx import Document from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas nltk.download('punkt') # Load the models and tokenizers once, not every time the function is called tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") # Function to convert DOCX to PDF using reportlab (UTF-8 compatible) def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"): doc = Document(docx_file) full_text = [] for para in doc.paragraphs: full_text.append(para.text) # Create a PDF and write the extracted text using reportlab pdf = canvas.Canvas(output_pdf, pagesize=letter) pdf.setFont("Helvetica", 12) # Write text line by line text = pdf.beginText(40, 750) # Start position on the page for line in full_text: text.textLine(line) pdf.drawText(text) pdf.save() return output_pdf # Main processing function def pdf_to_text(text, PDF, min_length=20): try: # Determine whether the input is a PDF or DOCX file_extension = os.path.splitext(PDF.name)[1].lower() # If DOCX, first convert it to PDF if file_extension == '.docx': pdf_file_path = docx_to_pdf(PDF.name) # Convert DOCX to PDF text = extract_text(pdf_file_path) # Extract text from the newly created PDF # If PDF, extract text from it directly elif file_extension == '.pdf' and text == "": text = extract_text(PDF.name) # Tokenize text inputs = tokenizer([text], max_length=1024, return_tensors="pt") min_length = int(min_length) # Generate summary summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=min_length, max_length=min_length+1000) output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0] # Save summarized text to PDF pdf = FPDF() pdf.add_page() pdf.set_font("Times", size=12) pdf.multi_cell(190, 10, txt=output_text, align='C') pdf_output_path = "legal.pdf" pdf.output(pdf_output_path) # Convert summarized text to audio audio_output_path = "legal.wav" tts = gTTS(text=output_text, lang='en', slow=False) tts.save(audio_output_path) return audio_output_path, output_text, pdf_output_path except Exception as e: return None, f"An error occurred: {str(e)}", None # Gradio interface iface = gr.Interface( fn=pdf_to_text, inputs=[gr.Textbox(label="Input Text"), gr.File(label="Upload PDF or DOCX"), gr.Slider(minimum=10, maximum=100, step=10, value=20, label="Summary Minimum Length")], outputs=[gr.Audio(label="Generated Audio"), gr.Textbox(label="Generated Summary"), gr.File(label="Summary PDF")] ) if __name__ == "__main__": iface.launch()