|
from fastai.vision.all import * |
|
import gradio as gr |
|
|
|
|
|
def clean_category_name(category_name): |
|
return category_name.replace("_", " ") |
|
|
|
model = load_learner('tradiotional_clothing_recognition-v1.pkl') |
|
|
|
|
|
original_categories = model.dls.vocab |
|
|
|
|
|
cleaned_categories = [clean_category_name(category) for category in original_categories] |
|
|
|
def recognize_image(image): |
|
pred, idx, probs = model.predict(image) |
|
return dict(zip(cleaned_categories, map(float, probs))) |
|
|
|
image = gr.inputs.Image(shape=(192, 192)) |
|
label = gr.outputs.Label(num_top_classes=5) |
|
|
|
examples = [ |
|
'unknown-1.jpg', |
|
'unknown-2.jpg', |
|
'unknown-6.jpg', |
|
'unknown-12.jpg', |
|
'unknown-16.jpg', |
|
'unknown-18.jpg' |
|
] |
|
|
|
iface = gr.Interface(fn=recognize_image, inputs=image, outputs=label, examples=examples) |
|
iface.launch(inline=False) |
|
|