File size: 841 Bytes
920c384
 
313c250
526d2c9
 
920c384
79a7d58
526d2c9
 
 
 
 
 
 
920c384
79a7d58
920c384
79a7d58
920c384
 
313c250
920c384
313c250
920c384
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


import gradio as gr
#from transformers import AutoModelForSequenceClassification, AutoTokenizer
#from transformers import BertTokenizer, BertLMHeadModel

# Load pre-trained model and tokenizer
#tokenizer = BertTokenizer.from_pretrained('clinicalBERT')
#model = BertLMHeadModel.from_pretrained('clinicalBERT')

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("medicalai/ClinicalBERT")
model = AutoModel.from_pretrained("medicalai/ClinicalBERT")


# Define a function to generate text using the model
def generate_text(input_text):
    input_ids = tokenizer.encode(input_text, return_tensors='pt')
    output = model.generate(input_ids)
    return tokenizer.decode(output[0], skip_special_tokens=True)

interface = gr.Interface(fn=generate_text, inputs="text", outputs="text")

interface.launch()