Spaces:
Sleeping
Sleeping
import gradio as gr | |
#from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
#from transformers import BertTokenizer, BertLMHeadModel | |
# Load pre-trained model and tokenizer | |
#tokenizer = BertTokenizer.from_pretrained('clinicalBERT') | |
#model = BertLMHeadModel.from_pretrained('clinicalBERT') | |
#from transformers import AutoTokenizer, AutoModel | |
#tokenizer = AutoTokenizer.from_pretrained("medicalai/ClinicalBERT") | |
#model = AutoModel.from_pretrained("medicalai/ClinicalBERT") | |
#from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
#tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") | |
#model = AutoModelForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT", num_labels=2) | |
import gradio as gr | |
from transformers import pipeline | |
# Carica il modello | |
model = pipeline("text-generation", model="emilyalsentzer/Bio_ClinicalBERT") | |
# Definisci la funzione per generare il testo | |
def generate_text(prompt): | |
return model(prompt, max_length=50)[0]['generated_text'] | |
# Crea l'interfaccia | |
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text") | |
# Esempio di utilizzo del modello | |
#inputs = tokenizer("Esempio di testo da classificare", return_tensors="pt") | |
#outputs = model(**inputs) | |
# Define a function to generate text using the model | |
#def generate_text(input_text): | |
# input_ids = tokenizer.encode(input_text, return_tensors='pt') | |
# output = model.generate(input_ids) | |
# return tokenizer.decode(output[0], skip_special_tokens=True) | |
#interface = gr.Interface(fn=generate_text, inputs="text", outputs="text") | |
interface.launch() | |