Spaces:
Sleeping
Sleeping
Commit
·
3ffe848
1
Parent(s):
591425a
Update app.py
Browse files
app.py
CHANGED
@@ -13,21 +13,33 @@ import gradio as gr
|
|
13 |
#model = AutoModel.from_pretrained("medicalai/ClinicalBERT")
|
14 |
|
15 |
|
16 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Esempio di utilizzo del modello
|
23 |
inputs = tokenizer("Esempio di testo da classificare", return_tensors="pt")
|
24 |
outputs = model(**inputs)
|
25 |
|
26 |
# Define a function to generate text using the model
|
27 |
-
def generate_text(input_text):
|
28 |
-
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
29 |
-
output = model.generate(input_ids)
|
30 |
-
return tokenizer.decode(output[0], skip_special_tokens=True)
|
31 |
|
32 |
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
33 |
|
|
|
13 |
#model = AutoModel.from_pretrained("medicalai/ClinicalBERT")
|
14 |
|
15 |
|
16 |
+
#from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
17 |
+
#tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
18 |
+
#model = AutoModelForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT", num_labels=2)
|
19 |
|
20 |
+
|
21 |
+
import gradio as gr
|
22 |
+
from transformers import pipeline
|
23 |
+
|
24 |
+
# Carica il modello
|
25 |
+
model = pipeline("text-generation", model="emilyalsentzer/Bio_ClinicalBERT")
|
26 |
+
|
27 |
+
# Definisci la funzione per generare il testo
|
28 |
+
def generate_text(prompt):
|
29 |
+
return model(prompt, max_length=50)[0]['generated_text']
|
30 |
+
|
31 |
+
# Crea l'interfaccia
|
32 |
+
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
33 |
|
34 |
# Esempio di utilizzo del modello
|
35 |
inputs = tokenizer("Esempio di testo da classificare", return_tensors="pt")
|
36 |
outputs = model(**inputs)
|
37 |
|
38 |
# Define a function to generate text using the model
|
39 |
+
#def generate_text(input_text):
|
40 |
+
# input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
41 |
+
# output = model.generate(input_ids)
|
42 |
+
# return tokenizer.decode(output[0], skip_special_tokens=True)
|
43 |
|
44 |
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
45 |
|