Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import (T5Tokenizer, | |
T5ForConditionalGeneration, | |
AddedToken, | |
) | |
tokenizer = T5Tokenizer.from_pretrained(f"google/flan-t5-base") | |
tokenizer.add_special_tokens({"additional_special_tokens": [AddedToken("\n")]}) | |
# load model | |
model_cktp = "model_checkpoint" | |
model = T5ForConditionalGeneration.from_pretrained(model_cktp) | |
def predict(input): | |
input_ids = tokenizer.encode(input, return_tensors="pt") | |
outputs = model.generate(input_ids, | |
max_length=200, | |
early_stopping=True) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=False) | |
response = response.replace("<pad>", "").replace("</s>", "") | |
return response | |
examples = [["""Service: telecom customer service. | |
Customer utterance : "I'm trying to find out when my tv service will be turn back on??????"| | |
Extract all strictly unnecessary sequences for the service provider to process the request/issue and then classify them using relational tags."""], | |
["""Service: airline customer service. | |
Customer utterance : "I need a ticket to Boston this Saturday, my son is graduating!"| | |
Extract all strictly unnecessary sequences for the service provider to process the request/issue and classify them using relational tags."""] | |
] | |
description = """This model detects and classifies relational strategies in customer service requests, using an instruction-based approach.""" | |
demo = gr.Interface(fn=predict, | |
inputs="text", | |
outputs="text", | |
title="FLAN-T5: Detect and Classify Relational Strategies", | |
examples=examples, | |
description=description) | |
if __name__ == "__main__": | |
demo.launch() | |