Spaces:
Sleeping
Sleeping
Arnab Das
commited on
Commit
·
5fde11f
1
Parent(s):
8773f6c
bug fix
Browse files- app_backup.py +0 -129
- models.py +2 -1
app_backup.py
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
import models as MOD
|
4 |
-
import process_data as PD
|
5 |
-
from transformers import pipeline
|
6 |
-
from manipulate_model.utils import get_config_and_model, infere
|
7 |
-
|
8 |
-
model_master = {
|
9 |
-
"SSL-AASIST (Trained on ASV-Spoof5)": {"eer_threshold": 3.3330237865448,
|
10 |
-
"data_process_func": "process_ssl_assist_input",
|
11 |
-
"note": "This model is trained only on ASVSpoof 2024 training data.",
|
12 |
-
"model_class": "Model",
|
13 |
-
"model_checkpoint": "ssl_aasist_epoch_7.pth"},
|
14 |
-
"AASIST": {"eer_threshold": 1.8018419742584229,
|
15 |
-
"data_process_func": "process_assist_input",
|
16 |
-
"note": "This model is trained on ASVSpoof 2024 training data.",
|
17 |
-
"model_class":"AASIST_Model",
|
18 |
-
"model_checkpoint": "orig_aasist_epoch_1.pth"}
|
19 |
-
}
|
20 |
-
|
21 |
-
model = MOD.Model(None, "cpu")
|
22 |
-
model.load_state_dict(torch.load("ssl_aasist_epoch_7.pth", map_location="cpu"))
|
23 |
-
model.eval()
|
24 |
-
loaded_model = "SSL-AASIST (Trained on ASV-Spoof5)"
|
25 |
-
|
26 |
-
manpulate_config, manipulate_model = get_config_and_model()
|
27 |
-
|
28 |
-
def process(file, type):
|
29 |
-
global model
|
30 |
-
global loaded_model
|
31 |
-
inp = getattr(PD, model_master[type]["data_process_func"])(file)
|
32 |
-
if not loaded_model == type:
|
33 |
-
model = getattr(MOD, model_master[type]["model_class"])(None, "cpu")
|
34 |
-
model.load_state_dict(torch.load(model_master[type]["model_checkpoint"], map_location="cpu"))
|
35 |
-
model.eval()
|
36 |
-
loaded_model = type
|
37 |
-
|
38 |
-
op = model(inp).detach().squeeze()[1].item()
|
39 |
-
|
40 |
-
response_text = "Decision score: {} \nDecision threshold: {} \nNotes: 1. Any score below threshold is indicative of fake. \n2. {} ".format(
|
41 |
-
str(op), str(model_master[type]["eer_threshold"]), model_master[type]["note"])
|
42 |
-
return response_text
|
43 |
-
|
44 |
-
|
45 |
-
demo = gr.Blocks()
|
46 |
-
file_proc = gr.Interface(
|
47 |
-
fn=process,
|
48 |
-
inputs=[
|
49 |
-
gr.Audio(sources=["upload"], label="Audio file", type="filepath"),
|
50 |
-
gr.Radio(["SSL-AASIST (Trained on ASV-Spoof5)", "AASIST"], label="Select Model", type="value"),
|
51 |
-
],
|
52 |
-
outputs="text",
|
53 |
-
title="Find the Fake: Analyze 'Real' or 'Fake'.",
|
54 |
-
description=(
|
55 |
-
"Analyze fake or real with a click of a button. Upload a .wav or .flac file."
|
56 |
-
),
|
57 |
-
examples=[
|
58 |
-
["./bonafide.flac", "SSL-AASIST (Trained on ASV-Spoof5)"],
|
59 |
-
["./fake.flac", "SSL-AASIST (Trained on ASV-Spoof5)"],
|
60 |
-
["./bonafide.flac", "AASIST"],
|
61 |
-
["./fake.flac", "AASIST"],
|
62 |
-
],
|
63 |
-
cache_examples=True,
|
64 |
-
allow_flagging="never",
|
65 |
-
)
|
66 |
-
#####################################################################################
|
67 |
-
# For ASR interface
|
68 |
-
pipe = pipeline(
|
69 |
-
task="automatic-speech-recognition",
|
70 |
-
model="openai/whisper-large-v3",
|
71 |
-
chunk_length_s=30,
|
72 |
-
device="cpu",
|
73 |
-
)
|
74 |
-
|
75 |
-
def transcribe(inputs):
|
76 |
-
if inputs is None:
|
77 |
-
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
78 |
-
|
79 |
-
op = pipe(inputs, batch_size=8, generate_kwargs={"task": "transcribe"}, return_timestamps=False, return_language=True)
|
80 |
-
lang = op["chunks"][0]["language"]
|
81 |
-
text = op["text"]
|
82 |
-
|
83 |
-
return lang, text
|
84 |
-
|
85 |
-
transcribe_proc = gr.Interface(
|
86 |
-
fn = transcribe,
|
87 |
-
inputs = [
|
88 |
-
gr.Audio(type="filepath", label="Speech file (<30s)", max_length=30, sources=["microphone", "upload"], show_download_button=True)
|
89 |
-
],
|
90 |
-
outputs=[
|
91 |
-
gr.Text(label="Predicted Language", info="Language identification is performed automatically."),
|
92 |
-
gr.Text(label="Predicted transcription", info="Best hypothesis."),
|
93 |
-
],
|
94 |
-
title="Transcribe Anything.",
|
95 |
-
description=(
|
96 |
-
"Automatactic language identification and transcription service by Whisper Large V3. Upload a .wav or .flac file."
|
97 |
-
),
|
98 |
-
allow_flagging="never"
|
99 |
-
)
|
100 |
-
|
101 |
-
#############################################################################################
|
102 |
-
#For manipulation detection interface
|
103 |
-
|
104 |
-
def detect_manipulation(inputs):
|
105 |
-
global manipulate_model
|
106 |
-
global manpulate_config
|
107 |
-
out = infere(manipulate_model, inputs, manpulate_config)
|
108 |
-
out = out.tolist()
|
109 |
-
return str(out)
|
110 |
-
|
111 |
-
manipulate_proc = gr.Interface(
|
112 |
-
fn = detect_manipulation,
|
113 |
-
inputs=[
|
114 |
-
gr.Audio(type="filepath", label="Speech file (<30s)", max_length=30, sources=["microphone", "upload"], show_download_button=True)
|
115 |
-
],
|
116 |
-
outputs=[
|
117 |
-
gr.Text(label="Predicted manipulations", info="Manipulation detection is performed automatically."),
|
118 |
-
],
|
119 |
-
title="Find the manipulated segments",
|
120 |
-
description=(
|
121 |
-
"Automatactic manipulation detection service. Upload a audio file."
|
122 |
-
),
|
123 |
-
allow_flagging="never"
|
124 |
-
)
|
125 |
-
|
126 |
-
with demo:
|
127 |
-
gr.TabbedInterface([file_proc, transcribe_proc, manipulate_proc], ["Analyze Audio File", "Transcribe Audio File", "Manipulation Detection"])
|
128 |
-
demo.queue(max_size=10)
|
129 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models.py
CHANGED
@@ -6,12 +6,13 @@ import torch.nn as nn
|
|
6 |
from torch import Tensor
|
7 |
from typing import Union
|
8 |
import torch.nn.functional as F
|
|
|
9 |
|
10 |
class SSLModel(nn.Module):
|
11 |
def __init__(self, device):
|
12 |
super(SSLModel, self).__init__()
|
13 |
|
14 |
-
cp_path = 'xlsr2_300m.pt' # Change the pre-trained XLSR model path.
|
15 |
model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([cp_path])
|
16 |
self.model = model[0]
|
17 |
self.device = device
|
|
|
6 |
from torch import Tensor
|
7 |
from typing import Union
|
8 |
import torch.nn.functional as F
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
class SSLModel(nn.Module):
|
12 |
def __init__(self, device):
|
13 |
super(SSLModel, self).__init__()
|
14 |
|
15 |
+
cp_path = hf_hub_download("arnabdas8901/aasist-trained-asvspoof2024", filename='xlsr2_300m.pt') #'xlsr2_300m.pt' # Change the pre-trained XLSR model path.
|
16 |
model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([cp_path])
|
17 |
self.model = model[0]
|
18 |
self.device = device
|