arshad-ml commited on
Commit
124b501
·
verified ·
1 Parent(s): 6b28a91

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -36
app.py CHANGED
@@ -1,70 +1,67 @@
1
- #Allows you to use Streamlit, a framework for building interactive web applications.
2
- #It provides functions for creating UIs, displaying data, and handling user inputs.
3
- import streamlit as st
 
 
4
 
 
5
 
6
- #This module provides a way to interact with the operating system, such as accessing environment variables, working with files
7
- #and directories, executing shell commands, etc
8
- import os
 
9
 
10
- #Helps us generate embeddings
11
- #An embedding is a vector (list) of floating point numbers. The distance between two vectors measures their relatedness.
12
- #Small distances suggest high relatedness and large distances suggest low relatedness.
13
  from langchain.embeddings import OpenAIEmbeddings
14
 
15
-
16
- #FAISS is an open-source library developed by Facebook AI Research for efficient similarity search and clustering of large-scale datasets, particularly with high-dimensional vectors.
17
- #It provides optimized indexing structures and algorithms for tasks like nearest neighbor search and recommendation systems.
18
  from langchain.vectorstores import FAISS
19
 
20
-
21
- #load_dotenv() is a function that loads variables from a .env file into environment variables in a Python script.
22
- #It allows you to store sensitive information or configuration settings separate from your code
23
- #and access them within your application.
24
- from dotenv import load_dotenv
25
-
26
-
27
  load_dotenv()
28
 
29
 
30
- #By using st.set_page_config(), you can customize the appearance of your Streamlit application's web page
31
  st.set_page_config(page_title="Educate Kids", page_icon=":robot:")
32
  st.header("Hey, Ask me something & I will give out similar things")
33
 
34
- #Initialize the OpenAIEmbeddings object
35
  embeddings = OpenAIEmbeddings()
36
 
37
- #The below snippet helps us to import CSV file data for our tasks
38
  from langchain.document_loaders.csv_loader import CSVLoader
39
- loader = CSVLoader(file_path='myData.csv', csv_args={
40
- 'delimiter': ',',
41
- 'quotechar': '"',
42
- 'fieldnames': ['Words']
43
- })
44
 
45
- #Assigning the data inside the csv to our variable here
 
 
 
 
 
46
  data = loader.load()
47
 
48
- #Display the data
49
  print(data)
50
 
51
  db = FAISS.from_documents(data, embeddings)
52
 
53
- #Function to receive input from user and store it in a variable
 
54
  def get_text():
55
- input_text = st.text_input("You: ", key= input)
56
  return input_text
57
 
58
 
59
- user_input=get_text()
60
- submit = st.button('Find similar Things')
61
 
62
  if submit:
63
-
64
- #If the button is clicked, the below snippet will fetch us the similar text
65
  docs = db.similarity_search(user_input)
66
  print(docs)
67
  st.subheader("Top Matches:")
68
  st.text(docs[0])
69
  st.text(docs[1].page_content)
70
-
 
1
+ # Allows you to use Streamlit, a framework for building interactive web applications.
2
+ # It provides functions for creating UIs, displaying data, and handling user inputs.
3
+ # This module provides a way to interact with the operating system, such as accessing environment variables, working with files
4
+ # and directories, executing shell commands, etc
5
+ import os
6
 
7
+ import streamlit as st
8
 
9
+ # load_dotenv() is a function that loads variables from a .env file into environment variables in a Python script.
10
+ # It allows you to store sensitive information or configuration settings separate from your code
11
+ # and access them within your application.
12
+ from dotenv import load_dotenv
13
 
14
+ # Helps us generate embeddings
15
+ # An embedding is a vector (list) of floating point numbers. The distance between two vectors measures their relatedness.
16
+ # Small distances suggest high relatedness and large distances suggest low relatedness.
17
  from langchain.embeddings import OpenAIEmbeddings
18
 
19
+ # FAISS is an open-source library developed by Facebook AI Research for efficient similarity search and clustering of large-scale datasets, particularly with high-dimensional vectors.
20
+ # It provides optimized indexing structures and algorithms for tasks like nearest neighbor search and recommendation systems.
 
21
  from langchain.vectorstores import FAISS
22
 
 
 
 
 
 
 
 
23
  load_dotenv()
24
 
25
 
26
+ # By using st.set_page_config(), you can customize the appearance of your Streamlit application's web page
27
  st.set_page_config(page_title="Educate Kids", page_icon=":robot:")
28
  st.header("Hey, Ask me something & I will give out similar things")
29
 
30
+ # Initialize the OpenAIEmbeddings object
31
  embeddings = OpenAIEmbeddings()
32
 
33
+ # The below snippet helps us to import CSV file data for our tasks
34
  from langchain.document_loaders.csv_loader import CSVLoader
 
 
 
 
 
35
 
36
+ loader = CSVLoader(
37
+ file_path="myData.csv",
38
+ csv_args={"delimiter": ",", "quotechar": '"', "fieldnames": ["Words"]},
39
+ )
40
+
41
+ # Assigning the data inside the csv to our variable here
42
  data = loader.load()
43
 
44
+ # Display the data
45
  print(data)
46
 
47
  db = FAISS.from_documents(data, embeddings)
48
 
49
+
50
+ # Function to receive input from user and store it in a variable
51
  def get_text():
52
+ input_text = st.text_input("You: ", key=input)
53
  return input_text
54
 
55
 
56
+ user_input = get_text()
57
+ submit = st.button("Find similar Things")
58
 
59
  if submit:
60
+
61
+ # If the button is clicked, the below snippet will fetch us the similar text
62
  docs = db.similarity_search(user_input)
63
  print(docs)
64
  st.subheader("Top Matches:")
65
  st.text(docs[0])
66
  st.text(docs[1].page_content)
67
+ st.text(docs[:3].page_content)