File size: 15,151 Bytes
8e71274
 
eb42e7a
 
8e71274
 
 
ed9ad5e
1b37f68
8e71274
 
a0c907f
8e71274
 
 
 
 
 
 
 
 
 
eb42e7a
8e71274
24c14af
ea4834d
24c14af
 
 
 
 
 
 
ea4834d
24c14af
 
 
8e71274
 
 
 
 
 
 
1b37f68
24c14af
 
 
 
 
 
 
 
 
4fc4d89
24c14af
 
1b37f68
 
24c14af
 
 
1b37f68
24c14af
 
ed9ad5e
1b37f68
 
 
 
 
eb42e7a
 
1b37f68
 
 
24c14af
 
 
 
 
 
 
 
 
 
 
 
 
 
8022f91
 
 
 
24c14af
 
 
 
8022f91
24c14af
8022f91
 
24c14af
 
 
 
 
 
 
 
 
 
 
8022f91
24c14af
 
 
 
8e71274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed9ad5e
8e71274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0c907f
 
8e71274
 
 
 
eb42e7a
8e71274
 
 
 
 
eb42e7a
8e71274
eb42e7a
 
ea4834d
eb42e7a
 
 
8e71274
 
 
eb42e7a
8e71274
 
 
 
 
eb42e7a
8e71274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f14681d
8e71274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b37f68
 
 
 
 
24c14af
1b37f68
 
ea4834d
1b37f68
 
 
8e71274
 
 
 
ea4834d
8e71274
 
 
 
 
 
 
 
 
 
eb42e7a
 
8e71274
1b37f68
8e71274
 
1b37f68
8e71274
 
 
 
 
 
 
 
 
 
 
 
 
d8f4e8d
 
eb42e7a
 
 
 
 
 
bde0da6
 
4fc4d89
 
 
ce6fe1b
4fc4d89
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

import datetime
import gradio as gr
import time
import uuid
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings

import os
from langchain.document_loaders import WebBaseLoader, TextLoader, Docx2txtLoader, PyMuPDFLoader, UnstructuredPowerPointLoader
from whatsapp_chat_custom import WhatsAppChatLoader # use this instead of from langchain.document_loaders import WhatsAppChatLoader

from collections import deque
import re
from bs4 import BeautifulSoup
import requests
from urllib.parse import urlparse
import mimetypes
from pathlib import Path
import tiktoken
import gdown

from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI

from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods
from ibm_watson_machine_learning.foundation_models import Model
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM


from genai.credentials import Credentials
from genai.extensions.langchain import LangChainInterface
from genai.schemas import GenerateParams

# Regex pattern to match a URL
HTTP_URL_PATTERN = r'^http[s]*://.+'

mimetypes.init()
media_files = tuple([x for x in mimetypes.types_map if mimetypes.types_map[x].split('/')[0] in ['image', 'video', 'audio']])
filter_strings = ['/email-protection#']

def getOaiCreds(key):
    key = key if key else 'Null'
    return {'service': 'openai',
                'oai_key' : key
            }


def getBamCreds(key):
    key = key if key else 'Null'
    return {'service': 'bam',
                'bam_creds' : Credentials(key, api_endpoint=os.getenv("BAM_ENDPOINT",'https://bam-api.res.ibm.com/v1'))
            }


def getWxCreds(key, p_id):
    key = key if key else 'Null'
    p_id = p_id if p_id else 'Null'
    return {'service': 'watsonx',
                'credentials' : {"url": "https://us-south.ml.cloud.ibm.com", "apikey": key },
                    'project_id': p_id
            }

def getPersonalBotApiKey():
    if os.getenv("OPENAI_API_KEY"):
        return getOaiCreds(os.getenv("OPENAI_API_KEY"))
    elif os.getenv("WX_API_KEY") and os.getenv("WX_PROJECT_ID"):
        return getWxCreds(os.getenv("WX_API_KEY"), os.getenv("WX_PROJECT_ID"))
    elif os.getenv("BAM_API_KEY"):
        return getBamCreds(os.getenv("BAM_API_KEY"))
    else:
        return {}
    


def getOaiLlm(temp, modelNameDD, api_key_st):
    modelName = modelNameDD.split('(')[0].strip()
    # check if the input model is chat model or legacy model
    try:
        ChatOpenAI(openai_api_key=api_key_st['oai_key'], temperature=0,model_name=modelName,max_tokens=1).predict('')
        llm = ChatOpenAI(openai_api_key=api_key_st['oai_key'], temperature=float(temp),model_name=modelName)
    except:
        OpenAI(openai_api_key=api_key_st['oai_key'], temperature=0,model_name=modelName,max_tokens=1).predict('')
        llm = OpenAI(openai_api_key=api_key_st['oai_key'], temperature=float(temp),model_name=modelName)
    return llm


MAX_NEW_TOKENS = 1024
TOP_K = None
TOP_P = 1

def getWxLlm(temp, modelNameDD, api_key_st):
    modelName = modelNameDD.split('(')[0].strip()
    wxModelParams = {
        GenParams.DECODING_METHOD: DecodingMethods.SAMPLE,
        GenParams.MAX_NEW_TOKENS: MAX_NEW_TOKENS,
        GenParams.TEMPERATURE: float(temp),
        GenParams.TOP_K: TOP_K,
        GenParams.TOP_P: TOP_P
    }
    model = Model(
            model_id=modelName, 
            params=wxModelParams, 
            credentials=api_key_st['credentials'], project_id=api_key_st['project_id'])
    llm = WatsonxLLM(model=model)
    return llm


def getBamLlm(temp, modelNameDD, api_key_st):
    modelName = modelNameDD.split('(')[0].strip()
    parameters = GenerateParams(decoding_method="sample", max_new_tokens=MAX_NEW_TOKENS, temperature=float(temp), top_k=TOP_K, top_p=TOP_P)
    llm = LangChainInterface(model=modelName, params=parameters, credentials=api_key_st['bam_creds'])
    return llm


def get_hyperlinks(url):
    try:
        reqs = requests.get(url)
        if not reqs.headers.get('Content-Type').startswith("text/html") or 400<=reqs.status_code<600:
            return []
        soup = BeautifulSoup(reqs.text, 'html.parser')
    except Exception as e:
        print(e)
        return []
    
    hyperlinks = []
    for link in soup.find_all('a', href=True):
        hyperlinks.append(link.get('href'))

    return hyperlinks


# Function to get the hyperlinks from a URL that are within the same domain
def get_domain_hyperlinks(local_domain, url):
    clean_links = []
    for link in set(get_hyperlinks(url)):
        clean_link = None

        # If the link is a URL, check if it is within the same domain
        if re.search(HTTP_URL_PATTERN, link):
            # Parse the URL and check if the domain is the same
            url_obj = urlparse(link)
            if url_obj.netloc.replace('www.','') == local_domain.replace('www.',''):
                clean_link = link

        # If the link is not a URL, check if it is a relative link
        else:
            if link.startswith("/"):
                link = link[1:]
            elif link.startswith(("#", '?', 'mailto:')):
                continue

            if 'wp-content/uploads' in url:
                clean_link = url+ "/" + link
            else:
                clean_link = "https://" + local_domain + "/" + link

        if clean_link is not None:
            clean_link = clean_link.strip().rstrip('/').replace('/../', '/')

            if not any(x in clean_link for x in filter_strings):
                clean_links.append(clean_link)

    # Return the list of hyperlinks that are within the same domain
    return list(set(clean_links))

# this function will get you a list of all the URLs from the base URL
def crawl(url, local_domain, prog=None):
    # Create a queue to store the URLs to crawl
    queue = deque([url])

    # Create a set to store the URLs that have already been seen (no duplicates)
    seen = set([url])

    # While the queue is not empty, continue crawling
    while queue:
        # Get the next URL from the queue
        url_pop = queue.pop()
        # Get the hyperlinks from the URL and add them to the queue
        for link in get_domain_hyperlinks(local_domain, url_pop):
            if link not in seen:
                queue.append(link)
                seen.add(link)
                if len(seen)>=100:
                    return seen
        if prog is not None: prog(1, desc=f'Crawling: {url_pop}')
    
    return seen


def ingestURL(documents, url, crawling=True, prog=None):
    url = url.rstrip('/')
    # Parse the URL and get the domain
    local_domain = urlparse(url).netloc
    if not (local_domain and url.startswith('http')):
        return documents
    print('Loading URL', url)
    if crawling:
        # crawl to get other webpages from this URL
        if prog is not None: prog(0, desc=f'Crawling: {url}')
        links = crawl(url, local_domain, prog)
        if prog is not None: prog(1, desc=f'Crawling: {url}')
    else:
        links = set([url])
    # separate pdf and other links
    c_links, pdf_links = [], []
    for x in links:
        if x.endswith('.pdf'):
            pdf_links.append(x)
        elif not x.endswith(media_files):
            c_links.append(x)

    #  Clean links loader using WebBaseLoader
    if prog is not None: prog(0.5, desc=f'Ingesting: {url}')
    if c_links:
        loader = WebBaseLoader(list(c_links))
        documents.extend(loader.load())

    # remote PDFs loader
    for pdf_link in list(pdf_links):
        loader = PyMuPDFLoader(pdf_link)
        doc = loader.load()
        for x in doc:
            x.metadata['source'] = loader.source
        documents.extend(doc)

    return documents

def ingestFiles(documents, files_list, prog=None):
    for fPath in files_list:
        doc = None
        if fPath.endswith('.pdf'):
            doc = PyMuPDFLoader(fPath).load()
        elif fPath.endswith('.txt') and not 'WhatsApp Chat with' in fPath:
            doc = TextLoader(fPath).load()
        elif fPath.endswith(('.doc', 'docx')):
            doc = Docx2txtLoader(fPath).load()
        elif 'WhatsApp Chat with' in fPath and fPath.endswith('.csv'): # Convert Whatsapp TXT files to CSV using https://whatstk.streamlit.app/
            doc = WhatsAppChatLoader(fPath).load()
        elif fPath.endswith(('.ppt', '.pptx')):
            doc = UnstructuredPowerPointLoader(fPath).load()
        else:
            pass
        
        if doc is not None and doc[0].page_content:
            if prog is not None: prog(0.9, desc='Loaded file: '+fPath.rsplit('/')[0])
            print('Loaded file:', fPath)
            documents.extend(doc)
    return documents


def data_ingestion(inputDir=None, file_list=[], url_list=[], gDriveFolder='', prog=None):
    documents = []
    # Ingestion from Google Drive Folder
    if gDriveFolder:
        opFolder = './tmp/gDriveDocs/'
        gdown.download_folder(url=gDriveFolder, output=opFolder, quiet=True)
        files = [str(x) for x in Path(opFolder).glob('**/*')]
        documents = ingestFiles(documents, files, prog)
    # Ingestion from Input Directory
    if inputDir is not None:
        files = [str(x) for x in Path(inputDir).glob('**/*')]
        documents = ingestFiles(documents, files, prog)
    if file_list:
        documents = ingestFiles(documents, file_list, prog)
    # Ingestion from URLs - also try https://python.langchain.com/docs/integrations/document_loaders/recursive_url_loader
    if url_list:
        for url in url_list:
            documents = ingestURL(documents, url, prog=prog)

    # Cleanup documents
    for x in documents:
        if 'WhatsApp Chat with' not in x.metadata['source']:
            x.page_content = x.page_content.strip().replace('\n', ' ').replace('\\n', ' ').replace('  ', ' ')
    
    # print(f"Total number of documents: {len(documents)}")
    return documents


def split_docs(documents):
    # Splitting and Chunks
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=2500, chunk_overlap=250) # default chunk size of 4000 makes around 1k tokens per doc. with k=4, this means 4k tokens input to LLM.
    docs = text_splitter.split_documents(documents)
    return docs


def getSourcesFromMetadata(metadata, sourceOnly=True, sepFileUrl=True):
    # metadata: list of metadata dict from all documents
    setSrc = set()
    for x in metadata:
        metadataText = '' # we need to convert each metadata dict into a string format. This string will be added to a set
        if x is not None:
            # extract source first, and then extract all other items
            source = x['source']
            source = source.rsplit('/',1)[-1] if 'http' not in source else source
            notSource = []
            for k,v in x.items():
                    if v is not None and k!='source' and k in ['page']:
                        notSource.extend([f"{k}: {v}"])
            metadataText = ', '.join([f'source: {source}'] + notSource) if sourceOnly==False else source
            setSrc.add(metadataText)

    if sepFileUrl:
        src_files = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted([x for x in setSrc if 'http' not in x], key=str.casefold))]))
        src_urls = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted([x for x in setSrc if 'http' in x], key=str.casefold))]))

        src_files = 'Files:\n'+src_files if src_files else ''
        src_urls  = 'URLs:\n'+src_urls if src_urls else ''
        newLineSep = '\n\n' if src_files and src_urls else ''
        
        return src_files + newLineSep + src_urls , len(setSrc)
    else:
        src_docs = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted(list(setSrc), key=str.casefold))]))
        return src_docs, len(setSrc)
    
def getEmbeddingFunc(creds):
    # OpenAI key used
        if creds.get('service')=='openai':
            embeddings = OpenAIEmbeddings(openai_api_key=creds.get('oai_key','Null'))
        # WX key used
        elif creds.get('service')=='watsonx' or creds.get('service')=='bam':
            # testModel = Model(model_id=ModelTypes.FLAN_UL2, credentials=creds['credentials'], project_id=creds['project_id']) # test the API key
            # del testModel
            embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2", cache_folder='./tmp/hfEmbModel') # for now use OpenSource model for embedding as WX doesnt have any embedding model
        else:
            raise Exception('Error: Invalid or None Credentials')
        return embeddings

def getVsDict(embeddingFunc, docs, vsDict={}):
    # create chroma client if doesnt exist
    if vsDict.get('chromaClient') is None:
        vsDict['chromaDir'] = './tmp/vecstore/'+str(uuid.uuid1())
        vsDict['chromaClient'] = Chroma(embedding_function=embeddingFunc, persist_directory=vsDict['chromaDir'])
    # clear chroma client before adding new docs
    if vsDict['chromaClient']._collection.count()>0:
        vsDict['chromaClient'].delete(vsDict['chromaClient'].get()['ids'])
    # add new docs to chroma client
    vsDict['chromaClient'].add_documents(docs)
    print('vectorstore count:',vsDict['chromaClient']._collection.count(), 'at', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    return vsDict

# used for Hardcoded documents only - not uploaded by user (userData_vecStore is separate function)
def localData_vecStore(embKey={}, inputDir=None, file_list=[], url_list=[], vsDict={}, gGrUrl=''):
    documents = data_ingestion(inputDir, file_list, url_list, gGrUrl)
    if not documents:
       raise Exception('Error: No Documents Found')
    docs = split_docs(documents)
    # Embeddings
    embeddings = getEmbeddingFunc(embKey)
    # create chroma client if doesnt exist
    vsDict_hd = getVsDict(embeddings, docs, vsDict)
    # get sources from metadata
    src_str = getSourcesFromMetadata(vsDict_hd['chromaClient'].get()['metadatas'])
    src_str = str(src_str[1]) + ' source document(s) successfully loaded in vector store.'+'\n\n' + src_str[0]
    print(src_str)
    return vsDict_hd


def num_tokens_from_string(string, encoding_name = "cl100k_base"):
    """Returns the number of tokens in a text string."""
    encoding = tiktoken.get_encoding(encoding_name)
    num_tokens = len(encoding.encode(string))
    return num_tokens

def changeModel(oldModel, newModel):
    if oldModel:
        warning = 'Credentials not found for '+oldModel+'. Using default model '+newModel
        gr.Warning(warning)
        time.sleep(1)
    return newModel

def getModelChoices(openAi_models, wml_models, bam_models):
    return [model +' (openai)' for model in openAi_models] + [model.value +' (watsonx)' for model in wml_models] + [model + ' (bam)' for model in bam_models]

def gradio_auth(userInput, passInput):
    if userInput == os.getenv("GRADIO_USER",'') and passInput == os.getenv("GRADIO_PASS",''):
        return True
    else:
        return False