Spaces:
Running
Running
from dotenv import load_dotenv | |
import datetime | |
import openai | |
import uuid | |
import gradio as gr | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.chains import RetrievalQA | |
from langchain.embeddings import SentenceTransformerEmbeddings | |
import os | |
from langchain.chat_models import ChatOpenAI | |
from langchain import OpenAI | |
from langchain.document_loaders import WebBaseLoader, TextLoader, Docx2txtLoader, PyMuPDFLoader | |
from whatsapp_chat_custom import WhatsAppChatLoader # use this instead of from langchain.document_loaders import WhatsAppChatLoader | |
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams | |
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods | |
from ibm_watson_machine_learning.foundation_models import Model | |
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM | |
from ibm_watson_machine_learning.foundation_models.utils.enums import ModelTypes | |
import genai | |
from collections import deque | |
import re | |
from bs4 import BeautifulSoup | |
import requests | |
from urllib.parse import urlparse | |
import mimetypes | |
from pathlib import Path | |
import tiktoken | |
from ttyd_functions import * | |
from ttyd_consts import * | |
############################################################################################### | |
load_dotenv() | |
TTYD_MODE = os.getenv("TTYD_MODE",'') | |
# select the mode when starting container - modes options are in ttyd_consts.py | |
if TTYD_MODE.split('_')[0]=='personalBot': | |
mode = mode_arslan | |
if TTYD_MODE!='personalBot_Arslan': | |
user = TTYD_MODE.split('_')[1] | |
mode.title='## Talk to '+user | |
mode.welcomeMsg= welcomeMsgUser(user) | |
elif os.getenv("TTYD_MODE",'')=='nustian': | |
mode = mode_nustian | |
else: | |
mode = mode_general | |
if mode.type!='userInputDocs': | |
# local vector store as opposed to gradio state vector store, if we the user is not uploading the docs | |
vsDict_hard = localData_vecStore(getPersonalBotApiKey(), inputDir=mode.inputDir, file_list=mode.file_list, url_list=mode.url_list, gGrUrl=mode.gDriveFolder) | |
############################################################################################### | |
# Gradio | |
############################################################################################### | |
def setOaiApiKey(creds): | |
creds = getOaiCreds(creds) | |
try: | |
openai.Model.list(api_key=creds.get('oai_key','Null')) # test the API key | |
api_key_st = creds | |
return 'OpenAI credentials accepted.', *[x.update(interactive=False) for x in credComps_btn_tb], api_key_st | |
except Exception as e: | |
gr.Warning(str(e)) | |
return [x.update() for x in credComps_op] | |
def setBamApiKey(creds): | |
creds = getBamCreds(creds) | |
try: | |
bam_models = genai.Model.models(credentials=creds['bam_creds']) | |
bam_models = sorted(x.id for x in bam_models) | |
api_key_st = creds | |
return 'BAM credentials accepted.', *[x.update(interactive=False) for x in credComps_btn_tb], api_key_st, model_dd.update(choices=getModelChoices(openAi_models, ModelTypes, bam_models)) | |
except Exception as e: | |
gr.Warning(str(e)) | |
return *[x.update() for x in credComps_op], model_dd.update() | |
def setWxApiKey(key, p_id): | |
creds = getWxCreds(key, p_id) | |
try: | |
Model(model_id='google/flan-ul2', credentials=creds['credentials'], project_id=creds['project_id']) # test the API key | |
api_key_st = creds | |
return 'Watsonx credentials accepted.', *[x.update(interactive=False) for x in credComps_btn_tb], api_key_st | |
except Exception as e: | |
gr.Warning(str(e)) | |
return [x.update() for x in credComps_op] | |
# convert user uploaded data to vectorstore | |
def uiData_vecStore(userFiles, userUrls, api_key_st, vsDict_st={}, progress=gr.Progress()): | |
opComponents = [data_ingest_btn, upload_fb, urls_tb, initChatbot_btn] | |
# parse user data | |
file_paths = [] | |
documents = [] | |
if userFiles is not None: | |
if not isinstance(userFiles, list): userFiles = [userFiles] | |
file_paths = [file.name for file in userFiles] | |
userUrls = [x.strip() for x in userUrls.split(",")] if userUrls else [] | |
#create documents | |
documents = data_ingestion(file_list=file_paths, url_list=userUrls, prog=progress) | |
if documents: | |
for file in file_paths: | |
os.remove(file) | |
else: | |
gr.Error('No documents found') | |
return {}, '', *[x.update() for x in opComponents] | |
# Splitting and Chunks | |
docs = split_docs(documents) | |
# Embeddings | |
try: | |
embeddings = getEmbeddingFunc(api_key_st) | |
except Exception as e: | |
gr.Error(str(e)) | |
return {}, '', *[x.update() for x in opComponents] | |
progress(0.5, 'Creating Vector Database') | |
vsDict_st = getVsDict(embeddings, docs, vsDict_st) | |
# get sources from metadata | |
src_str = getSourcesFromMetadata(vsDict_st['chromaClient'].get()['metadatas']) | |
src_str = str(src_str[1]) + ' source document(s) successfully loaded in vector store.'+'\n\n' + src_str[0] | |
progress(1, 'Data loaded') | |
return vsDict_st, src_str, *[x.update(interactive=False) for x in [data_ingest_btn, upload_fb]], urls_tb.update(interactive=False, placeholder=''), initChatbot_btn.update(interactive=True) | |
# initialize chatbot function sets the QA Chain, and also sets/updates any other components to start chatting. updateQaChain function only updates QA chain and will be called whenever Adv Settings are updated. | |
def initializeChatbot(temp, k, modelNameDD, stdlQs, api_key_st, vsDict_st, progress=gr.Progress()): | |
progress(0.1, waitText_initialize) | |
chainTuple = updateQaChain(temp, k, modelNameDD, stdlQs, api_key_st, vsDict_st) | |
qa_chain_st = chainTuple[0] | |
progress(0.5, waitText_initialize) | |
#generate welcome message | |
if mode.welcomeMsg: | |
welMsg = mode.welcomeMsg | |
else: | |
welMsg = welcomeMsgDefault | |
print('Chatbot initialized at ', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) | |
return qa_chain_st, chainTuple[1], btn.update(interactive=True), initChatbot_btn.update('Chatbot ready. Now visit the chatbot Tab.', interactive=False)\ | |
, status_tb.update(), gr.Tabs.update(selected='cb'), chatbot.update(value=[('', welMsg)]) | |
# just update the QA Chain, no updates to any UI | |
def updateQaChain(temp, k, modelNameDD, stdlQs, api_key_st, vsDict_st): | |
# if we are not adding data from ui, then use vsDict_hard as vectorstore | |
if vsDict_st=={} and mode.type!='userInputDocs': vsDict_st=vsDict_hard | |
if api_key_st['service']=='openai': | |
if not 'openai' in modelNameDD: | |
modelNameDD = changeModel(modelNameDD, OaiDefaultModel) | |
llm = getOaiLlm(temp, modelNameDD, api_key_st) | |
elif api_key_st['service']=='watsonx': | |
if not 'watsonx' in modelNameDD: | |
modelNameDD = changeModel(modelNameDD, WxDefaultModel) | |
llm = getWxLlm(temp, modelNameDD, api_key_st) | |
elif api_key_st['service']=='bam': | |
if not 'bam' in modelNameDD: | |
modelNameDD = changeModel(modelNameDD, BamDefaultModel) | |
llm = getBamLlm(temp, modelNameDD, api_key_st) | |
else: | |
raise Exception('Error: Invalid or None Credentials') | |
# settingsUpdated = 'Settings updated:'+ ' Model=' + modelName + ', Temp=' + str(temp)+ ', k=' + str(k) | |
# gr.Info(settingsUpdated) | |
if 'meta-llama/llama-2' in modelNameDD: | |
prompt = promptLlama | |
else: | |
prompt = None | |
# Now create QA Chain using the LLM | |
if stdlQs==0: # 0th index i.e. first option | |
qa_chain_st = RetrievalQA.from_llm( | |
llm=llm, | |
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}), | |
return_source_documents=True, | |
prompt=prompt, | |
input_key = 'question', output_key='answer' # to align with ConversationalRetrievalChain for downstream functions | |
) | |
else: | |
rephQs = False if stdlQs==1 else True | |
qa_chain_st = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}), | |
rephrase_question=rephQs, | |
return_source_documents=True, | |
return_generated_question=True, | |
combine_docs_chain_kwargs={'prompt':promptLlama} | |
) | |
return qa_chain_st, model_dd.update(value=modelNameDD) | |
def respond(message, chat_history, qa_chain): | |
result = qa_chain({'question': message, "chat_history": [tuple(x) for x in chat_history]}) | |
src_docs = getSourcesFromMetadata([x.metadata for x in result["source_documents"]], sourceOnly=False)[0] | |
# streaming | |
streaming_answer = "" | |
for ele in "".join(result['answer']): | |
streaming_answer += ele | |
yield "", chat_history + [(message, streaming_answer)], src_docs, btn.update('Please wait...', interactive=False) | |
chat_history.extend([(message, result['answer'])]) | |
yield "", chat_history, src_docs, btn.update('Send Message', interactive=True) | |
##################################################################################################### | |
with gr.Blocks(theme=gr.themes.Default(primary_hue='orange', secondary_hue='gray', neutral_hue='blue'), css="footer {visibility: hidden}") as demo: | |
# Initialize state variables - stored in this browser session - these can only be used within input or output of .click/.submit etc, not as a python var coz they are not stored in backend, only as a frontend gradio component | |
# but if you initialize it with a default value, that value will be stored in backend and accessible across all users. You can also change it with statear.value='newValue' | |
qa_state = gr.State() | |
api_key_state = gr.State(getPersonalBotApiKey() if mode.type=='personalBot' else {}) # can be string (OpenAI) or dict (WX) | |
chromaVS_state = gr.State({}) | |
# Setup the Gradio Layout | |
gr.Markdown(mode.title) | |
with gr.Tabs() as tabs: | |
with gr.Tab('Initialization', id='init'): | |
with gr.Row(): | |
with gr.Column(): | |
oaiKey_tb = gr.Textbox(label="OpenAI API Key", type='password'\ | |
, info='You can find OpenAI API key at https://platform.openai.com/account/api-keys') | |
oaiKey_btn = gr.Button("Submit OpenAI API Key") | |
with gr.Column(): | |
with gr.Row(): | |
wxKey_tb = gr.Textbox(label="Watsonx API Key", type='password'\ | |
, info='You can find IBM Cloud API Key at Manage > Access (IAM) > API keys on https://cloud.ibm.com/iam/overview') | |
wxPid_tb = gr.Textbox(label="Watsonx Project ID"\ | |
, info='You can find Project ID at Project -> Manage -> General -> Details on https://dataplatform.cloud.ibm.com/wx/home') | |
wxKey_btn = gr.Button("Submit Watsonx Credentials") | |
with gr.Column(): | |
bamKey_tb = gr.Textbox(label="BAM API Key", type='password'\ | |
, info='Internal IBMers only') | |
bamKey_btn = gr.Button("Submit BAM API Key") | |
with gr.Row(visible=mode.uiAddDataVis): | |
upload_fb = gr.Files(scale=5, label="Upload (multiple) Files - pdf/txt/docx supported", file_types=['.doc', '.docx', 'text', '.pdf', '.csv', '.ppt', '.pptx']) | |
urls_tb = gr.Textbox(scale=5, label="Enter URLs starting with https (comma separated)"\ | |
, info=url_tb_info\ | |
, placeholder=url_tb_ph) | |
data_ingest_btn = gr.Button("Load Data") | |
status_tb = gr.TextArea(label='Status Info') | |
initChatbot_btn = gr.Button("Initialize Chatbot", variant="primary", interactive=False) | |
credComps_btn_tb = [oaiKey_tb, oaiKey_btn, bamKey_tb, bamKey_btn, wxKey_tb, wxPid_tb, wxKey_btn] | |
credComps_op = [status_tb] + credComps_btn_tb + [api_key_state] | |
with gr.Tab('Chatbot', id='cb'): | |
with gr.Row(): | |
chatbot = gr.Chatbot(label="Chat History", scale=2, avatar_images=(user_avatar, bot_avatar)) | |
srcDocs = gr.TextArea(label="References") | |
msg = gr.Textbox(label="User Input",placeholder="Type your questions here") | |
with gr.Row(): | |
btn = gr.Button("Send Message", interactive=False, variant="primary") | |
clear = gr.ClearButton(components=[msg, chatbot, srcDocs], value="Clear chat history") | |
with gr.Accordion("Advance Settings - click to expand", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
temp_sld = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature", info='Sampling temperature to use when calling LLM. Defaults to 0.7') | |
k_sld = gr.Slider(minimum=1, maximum=10, step=1, value=mode.k, label="K", info='Number of relavant documents to return from Vector Store. Defaults to 4') | |
model_dd = gr.Dropdown(label='Model Name'\ | |
, choices=getModelChoices(openAi_models, ModelTypes, bam_models_old), allow_custom_value=True\ | |
, info=model_dd_info) | |
stdlQs_rb = gr.Radio(label='Standalone Question', info=stdlQs_rb_info\ | |
, type='index', value=stdlQs_rb_choices[1]\ | |
, choices=stdlQs_rb_choices) | |
### Setup the Gradio Event Listeners | |
# OpenAI API button | |
oaiKey_btn_args = {'fn':setOaiApiKey, 'inputs':[oaiKey_tb], 'outputs':credComps_op} | |
oaiKey_btn.click(**oaiKey_btn_args) | |
oaiKey_tb.submit(**oaiKey_btn_args) | |
# BAM API button | |
bamKey_btn_args = {'fn':setBamApiKey, 'inputs':[bamKey_tb], 'outputs':credComps_op+[model_dd]} | |
bamKey_btn.click(**bamKey_btn_args) | |
bamKey_tb.submit(**bamKey_btn_args) | |
# Watsonx Creds button | |
wxKey_btn_args = {'fn':setWxApiKey, 'inputs':[wxKey_tb, wxPid_tb], 'outputs':credComps_op} | |
wxKey_btn.click(**wxKey_btn_args) | |
# Data Ingest Button | |
data_ingest_event = data_ingest_btn.click(uiData_vecStore, [upload_fb, urls_tb, api_key_state, chromaVS_state], [chromaVS_state, status_tb, data_ingest_btn, upload_fb, urls_tb, initChatbot_btn]) | |
# Adv Settings | |
advSet_args = {'fn':updateQaChain, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state, model_dd]} | |
temp_sld.release(**advSet_args) | |
k_sld.release(**advSet_args) | |
model_dd.change(**advSet_args) | |
stdlQs_rb.change(**advSet_args) | |
# Initialize button | |
initCb_args = {'fn':initializeChatbot, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state, model_dd, btn, initChatbot_btn, status_tb, tabs, chatbot]} | |
if mode.type=='personalBot': | |
demo.load(**initCb_args) # load Chatbot UI directly on startup | |
initChatbot_btn.click(**initCb_args) | |
# Chatbot submit button | |
chat_btn_args = {'fn':respond, 'inputs':[msg, chatbot, qa_state], 'outputs':[msg, chatbot, srcDocs, btn]} | |
btn.click(**chat_btn_args) | |
msg.submit(**chat_btn_args) | |
demo.queue(concurrency_count=10) | |
demo.launch(show_error=True) |