arssite's picture
Upload 28 files
ffbb48e verified
import nibabel as nib
import os
from torch.utils.data import Dataset
import numpy as np
import matplotlib.pyplot as plt
from skimage.transform import resize
from PIL import Image
import random
AX_INDEX = 78
COR_INDEX = 79
SAG_INDEX = 57
AX_SCETION = "[:, :, slice_i]"
COR_SCETION = "[:, slice_i, :]"
SAG_SCETION = "[slice_i, :, :]"
class AD_Standard_2DRandomSlicesData(Dataset):
"""labeled Faces in the Wild dataset."""
def __init__(self, root_dir, data_file, transform=None, slice = slice):
"""
Args:
root_dir (string): Directory of all the images.
data_file (string): File name of the train/test split file.
transform (callable, optional): Optional transform to be applied on a sample.
data_augmentation (boolean): Optional data augmentation.
"""
self.root_dir = root_dir
self.data_file = data_file
self.transform = transform
def __len__(self):
return sum(1 for line in open(self.data_file))
def __getitem__(self, idx):
df = open(self.data_file)
lines = df.readlines()
lst = lines[idx].split()
img_name = lst[0]
img_label = lst[1]
image_path = os.path.join(self.root_dir, img_name)
image = nib.load(image_path)
samples = []
if img_label == 'Normal':
label = 0
elif img_label == 'AD':
label = 1
elif img_label == 'MCI':
label = 2
AXimageList = axRandomSlice(image)
CORimageList = corRandomSlice(image)
SAGimageList = sagRandomSlice(image)
for img2DList in (AXimageList, CORimageList, SAGimageList):
for image2D in img2DList:
if self.transform:
image2D = self.transform(image2D)
sample = {'image': image2D, 'label': label}
samples.append(sample)
random.shuffle(samples)
return samples
def getRandomSlice(image_array, keyIndex, section, step = 1):
slice_p = keyIndex
slice_2Dimgs = []
slice_select_0 = None
slice_select_1 = None
slice_select_2 = None
randomShift = random.randint(-9, 9)
slice_p = slice_p + randomShift
i = 0
for slice_i in range(slice_p-step, slice_p+step+1, step):
slice_select = eval("image_array"+section)
exec("slice_select_"+str(i)+"=slice_select")
i += 1
slice_2Dimg = np.stack((slice_select_0, slice_select_1, slice_select_2), axis = 2)
slice_2Dimgs.append(slice_2Dimg)
return slice_2Dimgs
def axRandomSlice(image):
image_array = np.array(image.get_data())
return getRandomSlice(image_array, AX_INDEX, AX_SCETION)
def corRandomSlice(image):
image_array = np.array(image.get_data())
return getRandomSlice(image_array, COR_INDEX, COR_SCETION)
def sagRandomSlice(image):
image_array = np.array(image.get_data())
return getRandomSlice(image_array, SAG_INDEX, SAG_SCETION)