Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import os | |
import random | |
import numpy as np | |
import json | |
import torch | |
from PIL import Image, PngImagePlugin | |
from datetime import datetime | |
from dataclasses import dataclass | |
from typing import Callable, Dict, Optional, Tuple | |
from diffusers import ( | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
DPMSolverSinglestepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
) | |
MAX_SEED = np.iinfo(np.int32).max | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def seed_everything(seed: int) -> torch.Generator: | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
np.random.seed(seed) | |
generator = torch.Generator() | |
generator.manual_seed(seed) | |
return generator | |
def parse_aspect_ratio(aspect_ratio: str) -> Optional[Tuple[int, int]]: | |
if aspect_ratio == "Custom": | |
return None | |
width, height = aspect_ratio.split(" x ") | |
return int(width), int(height) | |
def aspect_ratio_handler(aspect_ratio: str, custom_width: int, custom_height: int) -> Tuple[int, int]: | |
if aspect_ratio == "Custom": | |
return custom_width, custom_height | |
else: | |
width, height = parse_aspect_ratio(aspect_ratio) | |
return width, height | |
def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]: | |
scheduler_factory_map = { | |
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True), | |
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True), | |
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"), | |
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config), | |
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(scheduler_config), | |
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config), | |
} | |
return scheduler_factory_map.get(name, lambda: None)() | |
def free_memory() -> None: | |
torch.cuda.empty_cache() | |
gc.collect() | |
def common_upscale(samples: torch.Tensor, width: int, height: int, upscale_method: str) -> torch.Tensor: | |
return torch.nn.functional.interpolate(samples, size=(height, width), mode=upscale_method) | |
def upscale(samples: torch.Tensor, upscale_method: str, scale_by: float) -> torch.Tensor: | |
width = round(samples.shape[3] * scale_by) | |
height = round(samples.shape[2] * scale_by) | |
return common_upscale(samples, width, height, upscale_method) | |
def preprocess_image_dimensions(width, height): | |
if width % 8 != 0: | |
width = width - (width % 8) | |
if height % 8 != 0: | |
height = height - (height % 8) | |
return width, height | |
def save_image(image, metadata, output_dir): | |
current_time = datetime.now().strftime("%Y%m%d_%H%M%S") | |
os.makedirs(output_dir, exist_ok=True) | |
filename = f"image_{current_time}.png" | |
filepath = os.path.join(output_dir, filename) | |
metadata_str = json.dumps(metadata) | |
info = PngImagePlugin.PngInfo() | |
info.add_text("metadata", metadata_str) | |
image.save(filepath, "PNG", pnginfo=info) | |
return filepath | |
def is_google_colab(): | |
try: | |
import google.colab | |
return True | |
except: | |
return False |