|
import gradio as gr |
|
import requests |
|
import os |
|
import json |
|
|
|
API_KEY = os.getenv('API_KEY') |
|
INVOKE_URL = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/0e349b44-440a-44e1-93e9-abe8dcb27158" |
|
FETCH_URL_FORMAT = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/" |
|
|
|
headers = { |
|
"Authorization": f"Bearer {API_KEY}", |
|
"Accept": "application/json", |
|
"Content-Type": "application/json", |
|
} |
|
|
|
BASE_SYSTEM_MESSAGE = "I carefully provide accurate, factual, thoughtful, nuanced answers and am brilliant at reasoning." |
|
|
|
def clear_chat(chat_history_state, chat_message): |
|
print("Clearing chat...") |
|
chat_history_state = [] |
|
chat_message = '' |
|
return chat_history_state, chat_message |
|
|
|
def user(message, history, system_message=None): |
|
print(f"User message: {message}") |
|
history = history or [] |
|
if system_message: |
|
history.append({"role": "system", "content": system_message}) |
|
history.append({"role": "user", "content": message}) |
|
return history |
|
|
|
def call_nvidia_api(history, max_tokens, temperature, top_p): |
|
payload = { |
|
"messages": history, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"max_tokens": max_tokens, |
|
"stream": False |
|
} |
|
|
|
print(f"Payload enviado: {payload}") |
|
|
|
session = requests.Session() |
|
response = session.post(INVOKE_URL, headers=headers, json=payload) |
|
|
|
while response.status_code == 202: |
|
request_id = response.headers.get("NVCF-REQID") |
|
fetch_url = FETCH_URL_FORMAT + request_id |
|
response = session.get(fetch_url, headers=headers) |
|
|
|
response.raise_for_status() |
|
response_body = response.json() |
|
|
|
print(f"Payload recebido: {response_body}") |
|
|
|
if response_body["choices"]: |
|
assistant_message = response_body["choices"][0]["message"]["content"] |
|
history.append({"role": "assistant", "content": assistant_message}) |
|
|
|
return history |
|
|
|
def chat(history, system_message, max_tokens, temperature, top_p): |
|
print("Starting chat...") |
|
updated_history = call_nvidia_api(history, max_tokens, temperature, top_p) |
|
return updated_history, "" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("LLAMA 70B Free Demo") |
|
description=""" |
|
<div style="text-align: center; font-size: 1.5em; margin-bottom: 20px;"> |
|
<strong>Explore the Capabilities of LLAMA 70B</strong> |
|
</div> |
|
<p>Code Llama is an LLM capable of generating code, and natural language about code, from both code and natural language prompts. |
|
</p> |
|
<p> <strong>How to Use:</strong></p> |
|
<ol> |
|
<li>Enter your <strong>message</strong> in the textbox to start a conversation or ask a question.</li> |
|
<li>Adjust the <strong>Temperature</strong> and <strong>Top P</strong> sliders to control the creativity and diversity of the responses.</li> |
|
<li>Set the <strong>Max Tokens</strong> slider to determine the length of the response.</li> |
|
<li>Use the <strong>System Message</strong> textbox if you wish to provide a specific context or instruction for the AI.</li> |
|
<li>Click <strong>Send message</strong> to submit your query and receive a response from LLAMA70B.</li> |
|
<li>Press <strong>New topic</strong> to clear the chat history and start a new conversation thread.</li> |
|
</ol> |
|
<p> <strong>Powered by NVIDIA's cutting-edge AI API, LLAMA 70B offers an unparalleled opportunity to interact with an AI model of exceptional conversational ability, accessible to everyone at no cost.</strong></p> |
|
<p> <strong>HF Created by:</strong> @artificialguybr (<a href="https://twitter.com/artificialguybr">Twitter</a>)</p> |
|
<p> <strong>Discover more:</strong> <a href="https://artificialguy.com">artificialguy.com</a></p> |
|
""" |
|
gr.Markdown(description) |
|
chatbot = gr.Chatbot() |
|
message = gr.Textbox(label="What do you want to chat about?", placeholder="Ask me anything.", lines=3) |
|
submit = gr.Button(value="Send message") |
|
clear = gr.Button(value="New topic") |
|
system_msg = gr.Textbox(BASE_SYSTEM_MESSAGE, label="System Message", placeholder="System prompt.", lines=5) |
|
max_tokens = gr.Slider(20, 1024, label="Max Tokens", step=20, value=500, interactive=True) |
|
temperature = gr.Slider(0.0, 1.0, label="Temperature", step=0.1, value=0.7, interactive=True) |
|
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95, interactive=True) |
|
chat_history_state = gr.State([]) |
|
|
|
|
|
def update_chatbot(message, chat_history, system_message, max_tokens, temperature, top_p): |
|
print("Updating chatbot...") |
|
if not chat_history or (chat_history and chat_history[-1]["role"] != "user"): |
|
chat_history = user(message, chat_history, system_message if not chat_history else None) |
|
else: |
|
chat_history = user(message, chat_history) |
|
chat_history, _ = chat(chat_history, system_message, max_tokens, temperature, top_p) |
|
|
|
formatted_chat_history = [] |
|
for user_msg, assistant_msg in zip([msg["content"].strip() for msg in chat_history if msg["role"] == "user"], |
|
[msg["content"].strip() for msg in chat_history if msg["role"] == "assistant"]): |
|
if user_msg or assistant_msg: |
|
formatted_chat_history.append([user_msg, assistant_msg]) |
|
|
|
return formatted_chat_history, chat_history, "" |
|
|
|
submit.click( |
|
fn=update_chatbot, |
|
inputs=[message, chat_history_state, system_msg, max_tokens, temperature, top_p], |
|
outputs=[chatbot, chat_history_state, message] |
|
) |
|
|
|
clear.click( |
|
fn=clear_chat, |
|
inputs=[chat_history_state, message], |
|
outputs=[chat_history_state, message] |
|
) |
|
|
|
demo.launch() |