artificialguybr's picture
Update app.py
890954b verified
import gradio as gr
import requests
import os
import json
API_KEY = os.getenv('API_KEY')
INVOKE_URL = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/0e349b44-440a-44e1-93e9-abe8dcb27158"
FETCH_URL_FORMAT = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/"
headers = {
"Authorization": f"Bearer {API_KEY}",
"Accept": "application/json",
"Content-Type": "application/json",
}
BASE_SYSTEM_MESSAGE = "I carefully provide accurate, factual, thoughtful, nuanced answers and am brilliant at reasoning."
def clear_chat(chat_history_state, chat_message):
print("Clearing chat...")
chat_history_state = []
chat_message = ''
return chat_history_state, chat_message
def user(message, history, system_message=None):
print(f"User message: {message}")
history = history or []
if system_message: # Check if a system message is provided and should be added
history.append({"role": "system", "content": system_message})
history.append({"role": "user", "content": message})
return history
def call_nvidia_api(history, max_tokens, temperature, top_p):
payload = {
"messages": history,
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"stream": False
}
print(f"Payload enviado: {payload}") # Imprime o payload enviado
session = requests.Session()
response = session.post(INVOKE_URL, headers=headers, json=payload)
while response.status_code == 202:
request_id = response.headers.get("NVCF-REQID")
fetch_url = FETCH_URL_FORMAT + request_id
response = session.get(fetch_url, headers=headers)
response.raise_for_status()
response_body = response.json()
print(f"Payload recebido: {response_body}") # Imprime o payload recebido
if response_body["choices"]:
assistant_message = response_body["choices"][0]["message"]["content"]
history.append({"role": "assistant", "content": assistant_message})
return history
def chat(history, system_message, max_tokens, temperature, top_p):
print("Starting chat...")
updated_history = call_nvidia_api(history, max_tokens, temperature, top_p)
return updated_history, ""
# Gradio interface setup
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown("LLAMA 70B Free Demo")
description="""
<div style="text-align: center; font-size: 1.5em; margin-bottom: 20px;">
<strong>Explore the Capabilities of LLAMA 70B</strong>
</div>
<p>Code Llama is an LLM capable of generating code, and natural language about code, from both code and natural language prompts.
</p>
<p> <strong>How to Use:</strong></p>
<ol>
<li>Enter your <strong>message</strong> in the textbox to start a conversation or ask a question.</li>
<li>Adjust the <strong>Temperature</strong> and <strong>Top P</strong> sliders to control the creativity and diversity of the responses.</li>
<li>Set the <strong>Max Tokens</strong> slider to determine the length of the response.</li>
<li>Use the <strong>System Message</strong> textbox if you wish to provide a specific context or instruction for the AI.</li>
<li>Click <strong>Send message</strong> to submit your query and receive a response from LLAMA70B.</li>
<li>Press <strong>New topic</strong> to clear the chat history and start a new conversation thread.</li>
</ol>
<p> <strong>Powered by NVIDIA's cutting-edge AI API, LLAMA 70B offers an unparalleled opportunity to interact with an AI model of exceptional conversational ability, accessible to everyone at no cost.</strong></p>
<p> <strong>HF Created by:</strong> @artificialguybr (<a href="https://twitter.com/artificialguybr">Twitter</a>)</p>
<p> <strong>Discover more:</strong> <a href="https://artificialguy.com">artificialguy.com</a></p>
"""
gr.Markdown(description)
chatbot = gr.Chatbot()
message = gr.Textbox(label="What do you want to chat about?", placeholder="Ask me anything.", lines=3)
submit = gr.Button(value="Send message")
clear = gr.Button(value="New topic")
system_msg = gr.Textbox(BASE_SYSTEM_MESSAGE, label="System Message", placeholder="System prompt.", lines=5)
max_tokens = gr.Slider(20, 1024, label="Max Tokens", step=20, value=500, interactive=True)
temperature = gr.Slider(0.0, 1.0, label="Temperature", step=0.1, value=0.7, interactive=True)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95, interactive=True)
chat_history_state = gr.State([])
# Ajuste na definição da função update_chatbot para aceitar o valor atualizado do system_msg
def update_chatbot(message, chat_history, system_message, max_tokens, temperature, top_p):
print("Updating chatbot...")
if not chat_history or (chat_history and chat_history[-1]["role"] != "user"):
chat_history = user(message, chat_history, system_message if not chat_history else None)
else:
chat_history = user(message, chat_history)
chat_history, _ = chat(chat_history, system_message, max_tokens, temperature, top_p)
formatted_chat_history = []
for user_msg, assistant_msg in zip([msg["content"].strip() for msg in chat_history if msg["role"] == "user"],
[msg["content"].strip() for msg in chat_history if msg["role"] == "assistant"]):
if user_msg or assistant_msg: # Verify if either message is not empty
formatted_chat_history.append([user_msg, assistant_msg])
return formatted_chat_history, chat_history, ""
submit.click(
fn=update_chatbot,
inputs=[message, chat_history_state, system_msg, max_tokens, temperature, top_p],
outputs=[chatbot, chat_history_state, message]
)
clear.click(
fn=clear_chat,
inputs=[chat_history_state, message],
outputs=[chat_history_state, message]
)
demo.launch()