Spaces:
Runtime error
Runtime error
import gradio as gr | |
import re | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_name_or_path = "teknium/OpenHermes-2-Mistral-7B" | |
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, | |
device_map="auto", | |
trust_remote_code=False, | |
load_in_4bit=True, | |
revision="main") | |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) | |
BASE_SYSTEM_MESSAGE = "I carefully provide accurate, factual, thoughtful, nuanced answers and am brilliant at reasoning." | |
def clear_chat(chat_history_state, chat_message): | |
chat_history_state = [] | |
chat_message = '' | |
return chat_history_state, chat_message | |
def user(message, history): | |
history = history or [] | |
history.append([message, ""]) | |
return "", history | |
def regenerate(chatbot, chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty): | |
print("Regenerate function called") # Debug print | |
if not chat_history_state: | |
print("Chat history is empty") # Debug print | |
return chatbot, chat_history_state, "" | |
# Remove only the last assistant's message from the chat history | |
if len(chat_history_state) > 0: | |
print(f"Before: {chat_history_state[-1]}") # Debug print | |
chat_history_state[-1][1] = "" | |
print(f"After: {chat_history_state[-1]}") # Debug print | |
# Re-run the chat function | |
new_history, _, _ = chat(chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty) | |
print(f"New history: {new_history}") # Debug print | |
return new_history, new_history, "" | |
def chat(history, system_message, max_tokens, temperature, top_p, top_k, repetition_penalty): | |
print(f"Chat function called with history: {history}") | |
history = history or [] | |
# Use BASE_SYSTEM_MESSAGE if system_message is empty | |
system_message_to_use = system_message if system_message.strip() else BASE_SYSTEM_MESSAGE | |
# A última mensagem do usuário | |
user_prompt = history[-1][0] if history else "" | |
print(f"User prompt used for generation: {user_prompt}") # Debug print | |
# Preparar a entrada para o modelo | |
prompt_template = f'''system | |
{system_message_to_use.strip()} | |
user | |
{user_prompt} | |
assistant | |
''' | |
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() | |
# Gerar a saída | |
output = model.generate( | |
input_ids=input_ids, | |
max_length=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty | |
) | |
# Decodificar a saída | |
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) | |
assistant_response = decoded_output.split('assistant')[-1].strip() # Pegar apenas a última resposta do assistente | |
print(f"Generated assistant response: {assistant_response}") # Debug print | |
# Atualizar o histórico | |
if history: | |
history[-1][1] += assistant_response | |
else: | |
history.append(["", assistant_response]) | |
print(f"Updated history: {history}") | |
return history, history, "" | |
start_message = "" | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(""" | |
## OpenHermes-V2 Finetuned on Mistral 7B | |
**Space created by [@artificialguybr](https://twitter.com/artificialguybr). Model by [@Teknium1](https://twitter.com/Teknium1). Thanks HF for GPU!** | |
**OpenHermes-V2 is currently SOTA in some benchmarks for 7B models.** | |
**Hermes 2 model was trained on 900,000 instructions, and surpasses all previous versions of Hermes 13B and below, and matches 70B on some benchmarks! Hermes 2 changes the game with strong multiturn chat skills, system prompt capabilities, and uses ChatML format. It's quality, diversity and scale is unmatched in the current OS LM landscape. Not only does it do well in benchmarks, but also in unmeasured capabilities, like Roleplaying, Tasks, and more.** | |
""") | |
with gr.Row(): | |
#chatbot = gr.Chatbot().style(height=500) | |
chatbot = gr.Chatbot(elem_id="chatbot") | |
with gr.Row(): | |
message = gr.Textbox( | |
label="What do you want to chat about?", | |
placeholder="Ask me anything.", | |
lines=3, | |
) | |
with gr.Row(): | |
submit = gr.Button(value="Send message", variant="secondary", scale=1) | |
clear = gr.Button(value="New topic", variant="secondary", scale=0) | |
stop = gr.Button(value="Stop", variant="secondary", scale=0) | |
regen_btn = gr.Button(value="Regenerate", variant="secondary", scale=0) | |
with gr.Accordion("Show Model Parameters", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
max_tokens = gr.Slider(20, 512, label="Max Tokens", step=20, value=500) | |
temperature = gr.Slider(0.0, 2.0, label="Temperature", step=0.1, value=0.7) | |
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95) | |
top_k = gr.Slider(1, 100, label="Top K", step=1, value=40) | |
repetition_penalty = gr.Slider(1.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1) | |
system_msg = gr.Textbox( | |
start_message, label="System Message", interactive=True, visible=True, placeholder="System prompt. Provide instructions which you want the model to remember.", lines=5) | |
chat_history_state = gr.State() | |
clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message], queue=False) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
submit_click_event = submit.click( | |
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True | |
).then( | |
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[chatbot, chat_history_state, message], queue=True | |
) | |
# Corrected the clear button click event | |
clear.click( | |
fn=clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message], queue=False | |
) | |
# Stop button remains the same | |
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event], queue=False) | |
regen_click_event = regen_btn.click( | |
fn=regenerate, | |
inputs=[chatbot, chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty], | |
outputs=[chatbot, chat_history_state, message], | |
queue=True | |
) | |
demo.queue(max_size=128, concurrency_count=2) | |
demo.launch() |