import gradio as gr import re from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "teknium/OpenHermes-2-Mistral-7B" dtype = torch.bfloat16 model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=dtype, trust_remote_code=False, load_in_4bit=True, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) BASE_SYSTEM_MESSAGE = "I carefully provide accurate, factual, thoughtful, nuanced answers and am brilliant at reasoning." def clear_chat(chat_history_state, chat_message): chat_history_state = [] chat_message = '' return chat_history_state, chat_message def user(message, history): history = history or [] history.append([message, ""]) return "", history def regenerate(chatbot, chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty): print("Regenerate function called") # Debug print if not chat_history_state: print("Chat history is empty") # Debug print return chatbot, chat_history_state, "" # Remove only the last assistant's message from the chat history if len(chat_history_state) > 0: print(f"Before: {chat_history_state[-1]}") # Debug print chat_history_state[-1][1] = "" print(f"After: {chat_history_state[-1]}") # Debug print # Re-run the chat function new_history, _, _ = chat(chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty) print(f"New history: {new_history}") # Debug print return new_history, new_history, "" def chat(history, system_message, max_tokens, temperature, top_p, top_k, repetition_penalty): print(f"Chat function called with history: {history}") history = history or [] # Use BASE_SYSTEM_MESSAGE if system_message is empty system_message_to_use = system_message if system_message.strip() else BASE_SYSTEM_MESSAGE # A última mensagem do usuário user_prompt = history[-1][0] if history else "" print(f"User prompt used for generation: {user_prompt}") # Debug print # Preparar a entrada para o modelo prompt_template = f'''system {system_message_to_use.strip()} user {user_prompt} assistant ''' input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() # Gerar a saída output = model.generate( input_ids=input_ids, max_length=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty ) # Decodificar a saída decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) assistant_response = decoded_output.split('assistant')[-1].strip() # Pegar apenas a última resposta do assistente print(f"Generated assistant response: {assistant_response}") # Debug print # Atualizar o histórico if history: history[-1][1] += assistant_response else: history.append(["", assistant_response]) print(f"Updated history: {history}") return history, history, "" start_message = "" with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Markdown(""" ## OpenHermes-V2 Finetuned on Mistral 7B **Space created by [@artificialguybr](https://twitter.com/artificialguybr). Model by [@Teknium1](https://twitter.com/Teknium1). Thanks HF for GPU!** **OpenHermes-V2 is currently SOTA in some benchmarks for 7B models.** **Hermes 2 model was trained on 900,000 instructions, and surpasses all previous versions of Hermes 13B and below, and matches 70B on some benchmarks! Hermes 2 changes the game with strong multiturn chat skills, system prompt capabilities, and uses ChatML format. It's quality, diversity and scale is unmatched in the current OS LM landscape. Not only does it do well in benchmarks, but also in unmeasured capabilities, like Roleplaying, Tasks, and more.** """) with gr.Row(): #chatbot = gr.Chatbot().style(height=500) chatbot = gr.Chatbot(elem_id="chatbot") with gr.Row(): message = gr.Textbox( label="What do you want to chat about?", placeholder="Ask me anything.", lines=3, ) with gr.Row(): submit = gr.Button(value="Send message", variant="secondary", scale=1) clear = gr.Button(value="New topic", variant="secondary", scale=0) stop = gr.Button(value="Stop", variant="secondary", scale=0) regen_btn = gr.Button(value="Regenerate", variant="secondary", scale=0) with gr.Accordion("Show Model Parameters", open=False): with gr.Row(): with gr.Column(): max_tokens = gr.Slider(20, 512, label="Max Tokens", step=20, value=500) temperature = gr.Slider(0.0, 2.0, label="Temperature", step=0.1, value=0.7) top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95) top_k = gr.Slider(1, 100, label="Top K", step=1, value=40) repetition_penalty = gr.Slider(1.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1) system_msg = gr.Textbox( start_message, label="System Message", interactive=True, visible=True, placeholder="System prompt. Provide instructions which you want the model to remember.", lines=5) chat_history_state = gr.State() clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message], queue=False) clear.click(lambda: None, None, chatbot, queue=False) submit_click_event = submit.click( fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True ).then( fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[chatbot, chat_history_state, message], queue=True ) # Corrected the clear button click event clear.click( fn=clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message], queue=False ) # Stop button remains the same stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event], queue=False) regen_click_event = regen_btn.click( fn=regenerate, inputs=[chatbot, chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[chatbot, chat_history_state, message], queue=True ) demo.queue(max_size=128, concurrency_count=2) demo.launch()