Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
from surya.detection import batch_inference | |
from surya.model.segformer import load_model, load_processor | |
from surya.postprocessing.heatmap import draw_polys_on_image | |
model, processor = load_model(), load_processor() | |
HEADER = """ | |
# Surya OCR Demo | |
This demo will let you try surya, a multilingual OCR model. It supports text detection now, but will support text recognition in the future. | |
Notes: | |
- This works best on documents with printed text. | |
- Set DETECTOR_MODEL_CHECKPOINT=vikp/line_detector_math before running this app if you want better math detection. | |
Learn more [here](https://github.com/VikParuchuri/surya). | |
""".strip() | |
def text_detection(img): | |
preds = batch_inference([img], model, processor)[0] | |
img = draw_polys_on_image(preds["polygons"], img) | |
return img, preds | |
with gr.Blocks() as app: | |
gr.Markdown(HEADER) | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type="pil") | |
output_image = gr.Image(label="Output Image", type="pil", interactive=False) | |
text_detection_btn = gr.Button("Run Text Detection") | |
json_output = gr.JSON(label="JSON Output") | |
text_detection_btn.click(fn=text_detection, inputs=input_image, outputs=[output_image, json_output], api_name="text_detection") | |
if __name__ == "__main__": | |
app.launch() |