Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import logging | |
import os | |
import json | |
from PIL import Image, ImageDraw, ImageFont | |
import torch | |
from surya.ocr import run_ocr | |
from surya.detection import batch_text_detection | |
from surya.layout import batch_layout_detection | |
from surya.ordering import batch_ordering | |
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor | |
from surya.model.recognition.model import load_model as load_rec_model | |
from surya.model.recognition.processor import load_processor as load_rec_processor | |
from surya.settings import settings | |
from surya.model.ordering.processor import load_processor as load_order_processor | |
from surya.model.ordering.model import load_order_model | |
import io | |
# Configuração de logging | |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# Configuração do TorchDynamo | |
torch._dynamo.config.capture_scalar_outputs = True | |
# Configuração de variáveis de ambiente | |
os.environ["RECOGNITION_BATCH_SIZE"] = "512" | |
os.environ["DETECTOR_BATCH_SIZE"] = "36" | |
os.environ["ORDER_BATCH_SIZE"] = "32" | |
os.environ["RECOGNITION_STATIC_CACHE"] = "true" | |
# Carregamento de modelos | |
logger.info("Iniciando carregamento dos modelos...") | |
det_processor, det_model = load_det_processor(), load_det_model() | |
rec_model, rec_processor = load_rec_model(), load_rec_processor() | |
layout_model = load_det_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) | |
layout_processor = load_det_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) | |
order_model = load_order_model() | |
order_processor = load_order_processor() | |
# Compilação do modelo de reconhecimento | |
logger.info("Compilando modelo de reconhecimento...") | |
rec_model.decoder.model = torch.compile(rec_model.decoder.model) | |
class CustomJSONEncoder(json.JSONEncoder): | |
def default(self, obj): | |
if hasattr(obj, '__dict__'): | |
return obj.__dict__ | |
return str(obj) | |
def serialize_result(result): | |
return json.dumps(result, cls=CustomJSONEncoder, indent=2) | |
def draw_boxes(image, predictions): | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
for idx, pred in enumerate(predictions[0]['text_lines']): | |
bbox = pred['bbox'] | |
draw.rectangle(bbox, outline="red", width=2) | |
draw.text((bbox[0], bbox[1] - 10), f"{idx+1}", font=font, fill="red") | |
return image | |
def format_ocr_text(predictions): | |
formatted_text = "" | |
for idx, pred in enumerate(predictions[0]['text_lines']): | |
formatted_text += f"{idx+1}. {pred['text']} (Confidence: {pred['confidence']:.2f})\n" | |
return formatted_text | |
def ocr_workflow(image, langs): | |
logger.info(f"Iniciando workflow OCR com idiomas: {langs}") | |
try: | |
image_pil = Image.open(image.name) | |
predictions = run_ocr([image_pil], [langs.split(',')], det_model, det_processor, rec_model, rec_processor) | |
logger.info("Workflow OCR concluído com sucesso") | |
# Desenhar caixas na imagem | |
image_with_boxes = draw_boxes(image_pil.copy(), predictions) | |
# Formatar texto OCR | |
formatted_text = format_ocr_text(predictions) | |
return serialize_result(predictions), image_with_boxes, formatted_text | |
except Exception as e: | |
logger.error(f"Erro durante o workflow OCR: {e}") | |
return serialize_result({"error": str(e)}), None, str(e) | |
def text_detection_workflow(image): | |
logger.info("Iniciando workflow de detecção de texto") | |
try: | |
image_pil = Image.open(image.name) | |
predictions = batch_text_detection([image_pil], det_model, det_processor) | |
logger.info("Workflow de detecção de texto concluído com sucesso") | |
# Desenhar caixas na imagem | |
image_with_boxes = draw_boxes(image_pil.copy(), [{"text_lines": predictions[0].bboxes}]) | |
return serialize_result(predictions), image_with_boxes | |
except Exception as e: | |
logger.error(f"Erro durante o workflow de detecção de texto: {e}") | |
return serialize_result({"error": str(e)}), None | |
def layout_analysis_workflow(image): | |
logger.info("Iniciando workflow de análise de layout") | |
try: | |
image_pil = Image.open(image.name) | |
line_predictions = batch_text_detection([image_pil], det_model, det_processor) | |
layout_predictions = batch_layout_detection([image_pil], layout_model, layout_processor, line_predictions) | |
logger.info("Workflow de análise de layout concluído com sucesso") | |
# Desenhar caixas na imagem | |
image_with_boxes = draw_boxes(image_pil.copy(), [{"text_lines": layout_predictions[0].bboxes}]) | |
return serialize_result(layout_predictions), image_with_boxes | |
except Exception as e: | |
logger.error(f"Erro durante o workflow de análise de layout: {e}") | |
return serialize_result({"error": str(e)}), None | |
def reading_order_workflow(image): | |
logger.info("Iniciando workflow de ordem de leitura") | |
try: | |
image_pil = Image.open(image.name) | |
line_predictions = batch_text_detection([image_pil], det_model, det_processor) | |
layout_predictions = batch_layout_detection([image_pil], layout_model, layout_processor, line_predictions) | |
bboxes = [pred.bbox for pred in layout_predictions[0].bboxes] | |
order_predictions = batch_ordering([image_pil], [bboxes], order_model, order_processor) | |
logger.info("Workflow de ordem de leitura concluído com sucesso") | |
# Desenhar caixas na imagem com a ordem de leitura | |
image_with_order = image_pil.copy() | |
draw = ImageDraw.Draw(image_with_order) | |
font = ImageFont.load_default() | |
for idx, bbox in enumerate(order_predictions[0]['bboxes']): | |
draw.rectangle(bbox['bbox'], outline="blue", width=2) | |
draw.text((bbox['bbox'][0], bbox['bbox'][1] - 10), f"{idx+1}", font=font, fill="blue") | |
return serialize_result(order_predictions), image_with_order | |
except Exception as e: | |
logger.error(f"Erro durante o workflow de ordem de leitura: {e}") | |
return serialize_result({"error": str(e)}), None | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Análise de Documentos com Surya") | |
with gr.Tab("OCR"): | |
gr.Markdown("## Reconhecimento Óptico de Caracteres") | |
with gr.Row(): | |
ocr_input = gr.File(label="Carregar Imagem ou PDF") | |
ocr_langs = gr.Textbox(label="Idiomas (separados por vírgula)", value="en") | |
ocr_button = gr.Button("Executar OCR") | |
with gr.Row(): | |
ocr_output = gr.JSON(label="Resultados OCR") | |
ocr_image = gr.Image(label="Imagem com Caixas") | |
ocr_text = gr.Textbox(label="Texto Reconhecido", lines=10) | |
ocr_button.click(ocr_workflow, inputs=[ocr_input, ocr_langs], outputs=[ocr_output, ocr_image, ocr_text]) | |
with gr.Tab("Detecção de Texto"): | |
gr.Markdown("## Detecção de Linhas de Texto") | |
det_input = gr.File(label="Carregar Imagem ou PDF") | |
det_button = gr.Button("Executar Detecção de Texto") | |
with gr.Row(): | |
det_output = gr.JSON(label="Resultados da Detecção de Texto") | |
det_image = gr.Image(label="Imagem com Caixas") | |
det_button.click(text_detection_workflow, inputs=det_input, outputs=[det_output, det_image]) | |
with gr.Tab("Análise de Layout"): | |
gr.Markdown("## Análise de Layout e Ordem de Leitura") | |
layout_input = gr.File(label="Carregar Imagem ou PDF") | |
layout_button = gr.Button("Executar Análise de Layout") | |
order_button = gr.Button("Determinar Ordem de Leitura") | |
with gr.Row(): | |
layout_output = gr.JSON(label="Resultados da Análise de Layout") | |
layout_image = gr.Image(label="Imagem com Layout") | |
with gr.Row(): | |
order_output = gr.JSON(label="Resultados da Ordem de Leitura") | |
order_image = gr.Image(label="Imagem com Ordem de Leitura") | |
layout_button.click(layout_analysis_workflow, inputs=layout_input, outputs=[layout_output, layout_image]) | |
order_button.click(reading_order_workflow, inputs=layout_input, outputs=[order_output, order_image]) | |
if __name__ == "__main__": | |
logger.info("Iniciando aplicativo Gradio...") | |
demo.launch() | |