Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -8,53 +8,48 @@ from surya.model.recognition.model import load_model as load_rec_model
|
|
8 |
from surya.model.recognition.processor import load_processor as load_rec_processor
|
9 |
from surya.postprocessing.heatmap import draw_polys_on_image
|
10 |
|
11 |
-
#
|
12 |
det_model, det_processor = load_det_model(), load_det_processor()
|
13 |
rec_model, rec_processor = load_rec_model(), load_rec_processor()
|
14 |
|
15 |
-
#
|
16 |
with open("languages.json", "r") as file:
|
17 |
languages = json.load(file)
|
18 |
-
language_options = [(
|
19 |
-
|
20 |
-
def ocr_function(img, langs):
|
21 |
-
# Debugging: Print the languages input
|
22 |
-
print("Languages input:", langs)
|
23 |
-
lang_list = langs.split(',')
|
24 |
-
print("Language list:", lang_list)
|
25 |
-
|
26 |
-
# Ensure we're passing a list of images and a list of languages with matching lengths
|
27 |
-
images = [img] # Wrap the single image in a list
|
28 |
-
assert len(images) == len(lang_list), "Mismatch in the number of images and languages"
|
29 |
-
|
30 |
-
predictions = run_ocr(images, lang_list, det_model, det_processor, rec_model, rec_processor)[0]
|
31 |
-
img_with_text = draw_polys_on_image(predictions["polys"], img)
|
32 |
-
return img_with_text, predictions
|
33 |
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def text_line_detection_function(img):
|
36 |
-
preds =
|
37 |
img_with_lines = draw_polys_on_image(preds["polygons"], img)
|
38 |
return img_with_lines, preds
|
39 |
|
40 |
with gr.Blocks() as app:
|
41 |
-
gr.Markdown("# Surya OCR
|
42 |
with gr.Tab("OCR"):
|
43 |
-
with gr.
|
44 |
-
ocr_input_image = gr.Image(label="
|
45 |
-
ocr_language_selector = gr.Dropdown(label="
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
|
59 |
if __name__ == "__main__":
|
60 |
app.launch()
|
|
|
8 |
from surya.model.recognition.processor import load_processor as load_rec_processor
|
9 |
from surya.postprocessing.heatmap import draw_polys_on_image
|
10 |
|
11 |
+
# Carregar modelos e processadores
|
12 |
det_model, det_processor = load_det_model(), load_det_processor()
|
13 |
rec_model, rec_processor = load_rec_model(), load_rec_processor()
|
14 |
|
15 |
+
# Carregar opções de idioma
|
16 |
with open("languages.json", "r") as file:
|
17 |
languages = json.load(file)
|
18 |
+
language_options = [(language, code) for code, language in languages.items()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
def ocr_function(img, lang_code):
|
21 |
+
# Ajuste aqui para garantir que lang_code é uma lista
|
22 |
+
predictions = run_ocr([img], [lang_code], det_model, det_processor, rec_model, rec_processor)[0]
|
23 |
+
img_with_text = draw_polys_on_image(predictions["polys"], img)
|
24 |
+
return img_with_text, predictions["text"]
|
25 |
|
26 |
def text_line_detection_function(img):
|
27 |
+
preds = batch_inference([img], det_model, det_processor)[0]
|
28 |
img_with_lines = draw_polys_on_image(preds["polygons"], img)
|
29 |
return img_with_lines, preds
|
30 |
|
31 |
with gr.Blocks() as app:
|
32 |
+
gr.Markdown("# Surya OCR e Detecção de Linhas de Texto")
|
33 |
with gr.Tab("OCR"):
|
34 |
+
with gr.Column():
|
35 |
+
ocr_input_image = gr.Image(label="Imagem de Entrada para OCR", type="pil")
|
36 |
+
ocr_language_selector = gr.Dropdown(label="Selecione o Idioma para OCR", choices=language_options, value="en")
|
37 |
+
ocr_run_button = gr.Button("Executar OCR")
|
38 |
+
with gr.Column():
|
39 |
+
ocr_output_image = gr.Image(label="Imagem de Saída do OCR", type="pil", interactive=False)
|
40 |
+
ocr_text_output = gr.TextArea(label="Texto Reconhecido")
|
41 |
+
|
42 |
+
ocr_run_button.click(fn=ocr_function, inputs=[ocr_input_image, ocr_language_selector], outputs=[ocr_output_image, ocr_text_output])
|
43 |
+
|
44 |
+
with gr.Tab("Detecção de Linhas de Texto"):
|
45 |
+
with gr.Column():
|
46 |
+
detection_input_image = gr.Image(label="Imagem de Entrada para Detecção", type="pil")
|
47 |
+
detection_run_button = gr.Button("Executar Detecção de Linhas de Texto")
|
48 |
+
with gr.Column():
|
49 |
+
detection_output_image = gr.Image(label="Imagem de Saída da Detecção", type="pil", interactive=False)
|
50 |
+
detection_json_output = gr.JSON(label="Saída JSON da Detecção")
|
51 |
+
|
52 |
+
detection_run_button.click(fn=text_line_detection_function, inputs=detection_input_image, outputs=[detection_output_image, detection_json_output])
|
53 |
|
54 |
if __name__ == "__main__":
|
55 |
app.launch()
|