import gradio as gr import logging import os import json from PIL import Image, ImageDraw import torch from surya.ocr import run_ocr from surya.detection import batch_text_detection from surya.layout import batch_layout_detection from surya.ordering import batch_ordering from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor from surya.model.recognition.model import load_model as load_rec_model from surya.model.recognition.processor import load_processor as load_rec_processor from surya.settings import settings from surya.model.ordering.processor import load_processor as load_order_processor from surya.model.ordering.model import load_model as load_order_model # Configuração do TorchDynamo torch._dynamo.config.capture_scalar_outputs = True # Configuração de logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Configuração de variáveis de ambiente logger.info("Configurando variáveis de ambiente para otimização de performance") os.environ["RECOGNITION_BATCH_SIZE"] = "512" os.environ["DETECTOR_BATCH_SIZE"] = "36" os.environ["ORDER_BATCH_SIZE"] = "32" os.environ["RECOGNITION_STATIC_CACHE"] = "true" # Carregamento de modelos logger.info("Iniciando carregamento dos modelos...") try: logger.debug("Carregando modelo e processador de detecção...") det_processor, det_model = load_det_processor(), load_det_model() logger.debug("Modelo e processador de detecção carregados com sucesso") except Exception as e: logger.error(f"Erro ao carregar modelo de detecção: {e}") raise try: logger.debug("Carregando modelo e processador de reconhecimento...") rec_model, rec_processor = load_rec_model(), load_rec_processor() logger.debug("Modelo e processador de reconhecimento carregados com sucesso") except Exception as e: logger.error(f"Erro ao carregar modelo de reconhecimento: {e}") raise try: logger.debug("Carregando modelo e processador de layout...") layout_model = load_det_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) layout_processor = load_det_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) logger.debug("Modelo e processador de layout carregados com sucesso") except Exception as e: logger.error(f"Erro ao carregar modelo de layout: {e}") raise try: logger.debug("Carregando modelo e processador de ordenação...") order_model = load_order_model() order_processor = load_order_processor() logger.debug("Modelo e processador de ordenação carregados com sucesso") except Exception as e: logger.error(f"Erro ao carregar modelo de ordenação: {e}") raise logger.info("Todos os modelos foram carregados com sucesso") # Compilação do modelo de reconhecimento logger.info("Iniciando compilação do modelo de reconhecimento...") try: rec_model.decoder.model = torch.compile(rec_model.decoder.model) logger.info("Compilação do modelo de reconhecimento concluída com sucesso") except Exception as e: logger.error(f"Erro durante a compilação do modelo de reconhecimento: {e}") logger.warning("Continuando sem compilação do modelo") class CustomJSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, Image.Image): return "Image object (not serializable)" if hasattr(obj, '__dict__'): return {k: self.default(v) for k, v in obj.__dict__.items()} return str(obj) def serialize_result(result): return json.dumps(result, cls=CustomJSONEncoder, indent=2) def draw_boxes(image, predictions, color=(255, 0, 0)): draw = ImageDraw.Draw(image) if isinstance(predictions, list): for pred in predictions: if hasattr(pred, 'bboxes'): for bbox in pred.bboxes: draw.rectangle(bbox, outline=color, width=2) elif hasattr(pred, 'bbox'): draw.rectangle(pred.bbox, outline=color, width=2) elif hasattr(pred, 'polygon'): draw.polygon(pred.polygon, outline=color, width=2) elif hasattr(predictions, 'bboxes'): for bbox in predictions.bboxes: draw.rectangle(bbox, outline=color, width=2) return image def ocr_workflow(image, langs): logger.info(f"Iniciando workflow OCR com idiomas: {langs}") try: image = Image.open(image.name) logger.debug(f"Imagem carregada: {image.size}") predictions = run_ocr([image], [langs.split(',')], det_model, det_processor, rec_model, rec_processor) # Draw bounding boxes on the image image_with_boxes = draw_boxes(image.copy(), predictions[0].text_lines) # Format the OCR results formatted_text = "\n".join([line.text for line in predictions[0].text_lines]) logger.info("Workflow OCR concluído com sucesso") return serialize_result(predictions), image_with_boxes, formatted_text except Exception as e: logger.error(f"Erro durante o workflow OCR: {e}") return serialize_result({"error": str(e)}), None, "" def text_detection_workflow(image): logger.info("Iniciando workflow de detecção de texto") try: image = Image.open(image.name) logger.debug(f"Imagem carregada: {image.size}") predictions = batch_text_detection([image], det_model, det_processor) # Draw bounding boxes on the image image_with_boxes = draw_boxes(image.copy(), predictions) # Convert predictions to a serializable format serializable_predictions = [] for pred in predictions: serializable_pred = { 'bboxes': [bbox.tolist() if hasattr(bbox, 'tolist') else bbox for bbox in pred.bboxes], 'polygons': [poly.tolist() if hasattr(poly, 'tolist') else poly for poly in pred.polygons], 'confidences': pred.confidences, 'vertical_lines': [line.tolist() if hasattr(line, 'tolist') else line for line in pred.vertical_lines], 'image_bbox': pred.image_bbox.tolist() if hasattr(pred.image_bbox, 'tolist') else pred.image_bbox } serializable_predictions.append(serializable_pred) logger.info("Workflow de detecção de texto concluído com sucesso") return serialize_result(serializable_predictions), image_with_boxes except Exception as e: logger.error(f"Erro durante o workflow de detecção de texto: {e}") return serialize_result({"error": str(e)}), None def layout_analysis_workflow(image): logger.info("Iniciando workflow de análise de layout") try: image = Image.open(image.name) logger.debug(f"Imagem carregada: {image.size}") line_predictions = batch_text_detection([image], det_model, det_processor) logger.debug(f"Detecção de linhas concluída. Número de linhas detectadas: {len(line_predictions[0].bboxes)}") layout_predictions = batch_layout_detection([image], layout_model, layout_processor, line_predictions) # Draw bounding boxes on the image image_with_boxes = draw_boxes(image.copy(), layout_predictions[0], color=(0, 255, 0)) # Convert predictions to a serializable format serializable_predictions = [] for pred in layout_predictions: serializable_pred = { 'bboxes': [ { 'bbox': bbox.bbox.tolist() if hasattr(bbox.bbox, 'tolist') else bbox.bbox, 'polygon': bbox.polygon.tolist() if hasattr(bbox.polygon, 'tolist') else bbox.polygon, 'confidence': bbox.confidence, 'label': bbox.label } for bbox in pred.bboxes ], 'image_bbox': pred.image_bbox.tolist() if hasattr(pred.image_bbox, 'tolist') else pred.image_bbox } serializable_predictions.append(serializable_pred) logger.info("Workflow de análise de layout concluído com sucesso") return serialize_result(serializable_predictions), image_with_boxes except Exception as e: logger.error(f"Erro durante o workflow de análise de layout: {e}") return serialize_result({"error": str(e)}), None def reading_order_workflow(image): logger.info("Iniciando workflow de ordem de leitura") try: image = Image.open(image.name) logger.debug(f"Imagem carregada: {image.size}") line_predictions = batch_text_detection([image], det_model, det_processor) logger.debug(f"Detecção de linhas concluída. Número de linhas detectadas: {len(line_predictions[0].bboxes)}") layout_predictions = batch_layout_detection([image], layout_model, layout_processor, line_predictions) logger.debug(f"Análise de layout concluída. Número de elementos de layout: {len(layout_predictions[0].bboxes)}") bboxes = [pred.bbox for pred in layout_predictions[0].bboxes] order_predictions = batch_ordering([image], [bboxes], order_model, order_processor) # Draw bounding boxes on the image image_with_boxes = image.copy() draw = ImageDraw.Draw(image_with_boxes) for i, bbox in enumerate(order_predictions[0].bboxes): draw.rectangle(bbox.bbox, outline=(0, 0, 255), width=2) draw.text((bbox.bbox[0], bbox.bbox[1]), str(bbox.position), fill=(255, 0, 0)) logger.info("Workflow de ordem de leitura concluído com sucesso") return serialize_result(order_predictions), image_with_boxes except Exception as e: logger.error(f"Erro durante o workflow de ordem de leitura: {e}") return serialize_result({"error": str(e)}), None with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# Análise de Documentos com Surya") with gr.Tab("OCR"): gr.Markdown("## Reconhecimento Óptico de Caracteres") with gr.Row(): ocr_input = gr.File(label="Carregar Imagem ou PDF") ocr_langs = gr.Textbox(label="Idiomas (separados por vírgula)", value="en") ocr_button = gr.Button("Executar OCR") ocr_output = gr.JSON(label="Resultados OCR") ocr_image = gr.Image(label="Imagem com Bounding Boxes") ocr_text = gr.Textbox(label="Texto Extraído", lines=10) ocr_button.click(ocr_workflow, inputs=[ocr_input, ocr_langs], outputs=[ocr_output, ocr_image, ocr_text]) with gr.Tab("Detecção de Texto"): gr.Markdown("## Detecção de Linhas de Texto") det_input = gr.File(label="Carregar Imagem ou PDF") det_button = gr.Button("Executar Detecção de Texto") det_output = gr.JSON(label="Resultados da Detecção de Texto") det_image = gr.Image(label="Imagem com Bounding Boxes") det_button.click(text_detection_workflow, inputs=det_input, outputs=[det_output, det_image]) with gr.Tab("Análise de Layout"): gr.Markdown("## Análise de Layout e Ordem de Leitura") layout_input = gr.File(label="Carregar Imagem ou PDF") layout_button = gr.Button("Executar Análise de Layout") order_button = gr.Button("Determinar Ordem de Leitura") layout_output = gr.JSON(label="Resultados da Análise de Layout") layout_image = gr.Image(label="Imagem com Layout") order_output = gr.JSON(label="Resultados da Ordem de Leitura") order_image = gr.Image(label="Imagem com Ordem de Leitura") layout_button.click(layout_analysis_workflow, inputs=layout_input, outputs=[layout_output, layout_image]) order_button.click(reading_order_workflow, inputs=layout_input, outputs=[order_output, order_image]) if __name__ == "__main__": logger.info("Iniciando aplicativo Gradio...") demo.launch()