Spaces:
Runtime error
Runtime error
from PIL import Image | |
# https://pillow.readthedocs.io/en/stable/reference/Image.html#dither-modes | |
DITHER_METHODS = { | |
"None": Image.Dither.NONE, | |
"Floyd-Steinberg": Image.Dither.FLOYDSTEINBERG | |
} | |
#https://pillow.readthedocs.io/en/stable/reference/Image.html#quantization-methods | |
QUANTIZATION_METHODS = { | |
"Median cut": Image.Quantize.MEDIANCUT, | |
"Maximum coverage": Image.Quantize.MAXCOVERAGE, | |
"Fast octree": Image.Quantize.FASTOCTREE, | |
"libimagequant": Image.Quantize.LIBIMAGEQUANT | |
} | |
def downscale_image(image: Image, scale: int) -> Image: | |
width, height = image.size | |
downscaled_image = image.resize((int(width / scale), int(height / scale)), Image.NEAREST) | |
return downscaled_image | |
def resize_image(image: Image, size) -> Image: | |
width, height = size | |
resized_image = image.resize((width, height), Image.NEAREST) | |
return resized_image | |
def limit_colors( | |
image, | |
limit: int=16, | |
palette=None, | |
palette_colors: int=256, | |
quantize: Image.Quantize=Image.Quantize.MEDIANCUT, | |
dither: Image.Dither=Image.Dither.NONE, | |
use_k_means: bool=False | |
): | |
if use_k_means: | |
k_means_value = limit | |
else: | |
k_means_value = 0 | |
if palette: | |
palette_image = palette | |
ppalette = palette.getcolors() | |
if ppalette: | |
color_palette = palette.quantize(colors=len(list(set(ppalette)))) | |
else: | |
colors = len(palette_image.getcolors()) if palette_image.getcolors() else palette_colors | |
color_palette = palette_image.quantize(colors, kmeans=colors) | |
else: | |
# we need to get palette from image, because | |
# dither in quantize doesn't work without it | |
# https://pillow.readthedocs.io/en/stable/_modules/PIL/Image.html#Image.quantize | |
color_palette = image.quantize(colors=limit, kmeans=k_means_value, method=quantize, dither=Image.Dither.NONE) | |
new_image = image.quantize(palette=color_palette, dither=dither) | |
return new_image | |
def convert_to_grayscale(image): | |
new_image = image.convert("L") | |
return new_image.convert("RGB") | |
def convert_to_black_and_white(image: Image, threshold: int=128, is_inversed: bool=False): | |
if is_inversed: | |
apply_threshold = lambda x : 255 if x < threshold else 0 | |
else: | |
apply_threshold = lambda x : 255 if x > threshold else 0 | |
black_and_white_image = image.convert('L', dither=Image.Dither.NONE).point(apply_threshold, mode='1') | |
return black_and_white_image.convert("RGB") | |