Spaces:
Runtime error
Runtime error
import gradio as gr | |
import modules.scripts as scripts | |
from modules import images | |
from modules.shared import opts | |
from sd_webui_pixelart.utils import DITHER_METHODS, QUANTIZATION_METHODS, downscale_image, limit_colors, resize_image, convert_to_black_and_white, convert_to_grayscale | |
class Script(scripts.Script): | |
def title(self): | |
return "Pixel art" | |
def show(self, is_img2img): | |
return scripts.AlwaysVisible | |
def ui(self, is_img2img): | |
quantization_methods = ['Median cut', 'Maximum coverage', 'Fast octree'] | |
dither_methods = ['None', 'Floyd-Steinberg'] | |
with gr.Accordion("Pixel art", open=False): | |
with gr.Row(): | |
enabled = gr.Checkbox(label="Enable", value=False) | |
with gr.Column(): | |
with gr.Row(): | |
downscale = gr.Slider(label="Downscale", minimum=1, maximum=32, step=2, value=8) | |
need_rescale = gr.Checkbox(label="Rescale to original size", value=True) | |
with gr.Tabs(): | |
with gr.TabItem("Color"): | |
enable_color_limit = gr.Checkbox(label="Enable", value=False) | |
number_of_colors = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) | |
quantization_method = gr.Radio(choices=quantization_methods, value=quantization_methods[0], label='Colors quantization method') | |
dither_method = gr.Radio(choices=dither_methods, value=dither_methods[0], label='Colors dither method') | |
use_k_means = gr.Checkbox(label="Enable k-means for color quantization", value=True) | |
with gr.TabItem("Grayscale"): | |
is_grayscale = gr.Checkbox(label="Enable", value=False) | |
number_of_shades = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) | |
quantization_method_grayscale = gr.Radio(choices=quantization_methods, value=quantization_methods[0], label='Colors quantization method') | |
dither_method_grayscale = gr.Radio(choices=dither_methods, value=dither_methods[0], label='Colors dither method') | |
use_k_means_grayscale = gr.Checkbox(label="Enable k-means for color quantization", value=True) | |
with gr.TabItem("Black and white"): | |
with gr.Row(): | |
is_black_and_white = gr.Checkbox(label="Enable", value=False) | |
is_inversed_black_and_white = gr.Checkbox(label="Inverse", value=False) | |
with gr.Row(): | |
black_and_white_threshold = gr.Slider(label="Threshold", minimum=1, maximum=256, step=1, value=128) | |
with gr.TabItem("Custom color palette"): | |
use_color_palette = gr.Checkbox(label="Enable", value=False) | |
palette_image=gr.Image(label="Color palette image", type="pil") | |
palette_colors = gr.Slider(label="Palette Size (only for complex images)", minimum=1, maximum=256, step=1, value=16) | |
dither_method_palette = gr.Radio(choices=dither_methods, value=dither_methods[0], label='Colors dither method') | |
return [enabled, downscale, need_rescale, enable_color_limit, number_of_colors, quantization_method, dither_method, use_k_means, is_grayscale, number_of_shades, quantization_method_grayscale, dither_method_grayscale, use_k_means_grayscale, is_black_and_white, is_inversed_black_and_white, black_and_white_threshold, use_color_palette, palette_image, palette_colors, dither_method_palette] | |
def postprocess( | |
self, | |
p, | |
processed, | |
enabled, | |
downscale, | |
need_rescale, | |
enable_color_limit, | |
number_of_colors, | |
quantization_method, | |
dither_method, | |
use_k_means, | |
is_grayscale, | |
number_of_shades, | |
quantization_method_grayscale, | |
dither_method_grayscale, | |
use_k_means_grayscale, | |
is_black_and_white, | |
is_inversed_black_and_white, | |
black_and_white_threshold, | |
use_color_palette, | |
palette_image, | |
palette_colors, | |
dither_method_palette | |
): | |
if not enabled: | |
return | |
dither = DITHER_METHODS[dither_method] | |
quantize = QUANTIZATION_METHODS[quantization_method] | |
dither_grayscale = DITHER_METHODS[dither_method_grayscale] | |
quantize_grayscale = QUANTIZATION_METHODS[quantization_method_grayscale] | |
dither_palette = DITHER_METHODS[dither_method_palette] | |
def process_image(original_image): | |
original_width, original_height = original_image.size | |
if original_image.mode != "RGB": | |
new_image = original_image.convert("RGB") | |
else: | |
new_image = original_image | |
new_image = downscale_image(new_image, downscale) | |
if use_color_palette: | |
new_image = limit_colors( | |
image=new_image, | |
palette=palette_image, | |
palette_colors=palette_colors, | |
dither=dither_palette | |
) | |
if is_black_and_white: | |
new_image = convert_to_black_and_white(new_image, black_and_white_threshold, is_inversed_black_and_white) | |
if is_grayscale: | |
new_image = convert_to_grayscale(new_image) | |
new_image = limit_colors( | |
image=new_image, | |
limit=int(number_of_shades), | |
quantize=quantize_grayscale, | |
dither=dither_grayscale, | |
use_k_means=use_k_means_grayscale | |
) | |
if enable_color_limit: | |
new_image = limit_colors( | |
image=new_image, | |
limit=int(number_of_colors), | |
quantize=quantize, | |
dither=dither, | |
use_k_means=use_k_means | |
) | |
if need_rescale: | |
new_image = resize_image(new_image, (original_width, original_height)) | |
return new_image.convert('RGBA') | |
for i in range(len(processed.images)): | |
pixel_image = process_image(processed.images[i]) | |
processed.images.append(pixel_image) | |
images.save_image(pixel_image, p.outpath_samples, "pixel", | |
processed.seed + i, processed.prompt, opts.samples_format, info= processed.info, p=p) | |
return processed | |