Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,907 Bytes
45ee559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook computes the average SNR a given Voice Dataset. If the SNR is too low, that might reduce the performance or prevent model to learn. SNR paper can be seen here: https://www.cs.cmu.edu/~robust/Papers/KimSternIS08.pdf\n",
"\n",
"To use this notebook, you need:\n",
"- WADA SNR estimation: http://www.cs.cmu.edu/~robust/archive/algorithms/WADA_SNR_IS_2008/\n",
" 1. extract in the same folder as this notebook\n",
" 2. under MacOS you'll have to rebuild the executable. In the build folder: 1) remove existing .o files and 2) run make\n",
"\n",
"\n",
"- FFMPEG: ```sudo apt-get install ffmpeg ``` \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import glob\n",
"import subprocess\n",
"import IPython\n",
"import soundfile as sf\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"from multiprocessing import Pool\n",
"from matplotlib import pylab as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set the meta parameters\n",
"DATA_PATH = \"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/eva_k/\"\n",
"NUM_PROC = 1\n",
"CURRENT_PATH = os.getcwd()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def compute_file_snr(file_path):\n",
" \"\"\" Convert given file to required format with FFMPEG and process with WADA.\"\"\"\n",
" _, sr = sf.read(file_path)\n",
" new_file = file_path.replace(\".wav\", \"_tmp.wav\")\n",
" if sr != 16000:\n",
" command = f'ffmpeg -i \"{file_path}\" -ac 1 -acodec pcm_s16le -y -ar 16000 \"{new_file}\"'\n",
" else:\n",
" command = f'cp \"{file_path}\" \"{new_file}\"'\n",
" os.system(command)\n",
" command = [f'\"{CURRENT_PATH}/WadaSNR/Exe/WADASNR\"', f'-i \"{new_file}\"', f'-t \"{CURRENT_PATH}/WadaSNR/Exe/Alpha0.400000.txt\"', '-ifmt mswav']\n",
" output = subprocess.check_output(\" \".join(command), shell=True)\n",
" try:\n",
" output = float(output.split()[-3].decode(\"utf-8\"))\n",
" except:\n",
" raise RuntimeError(\" \".join(command))\n",
" os.system(f'rm \"{new_file}\"')\n",
" return output, file_path\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"wav_file = \"/home/erogol/Data/LJSpeech-1.1/wavs/LJ001-0001.wav\"\n",
"output = compute_file_snr(wav_file)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"wav_files = glob.glob(f\"{DATA_PATH}/**/*.wav\", recursive=True)\n",
"print(f\" > Number of wav files {len(wav_files)}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if NUM_PROC == 1:\n",
" file_snrs = [None] * len(wav_files) \n",
" for idx, wav_file in tqdm(enumerate(wav_files)):\n",
" tup = compute_file_snr(wav_file)\n",
" file_snrs[idx] = tup\n",
"else:\n",
" with Pool(NUM_PROC) as pool:\n",
" file_snrs = list(tqdm(pool.imap(compute_file_snr, wav_files), total=len(wav_files)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"snrs = [tup[0] for tup in file_snrs]\n",
"\n",
"error_idxs = np.where(np.isnan(snrs) == True)[0]\n",
"error_files = [wav_files[idx] for idx in error_idxs]\n",
"\n",
"file_snrs = [i for j, i in enumerate(file_snrs) if j not in error_idxs]\n",
"file_names = [tup[1] for tup in file_snrs]\n",
"snrs = [tup[0] for tup in file_snrs]\n",
"file_idxs = np.argsort(snrs)\n",
"\n",
"\n",
"print(f\" > Average SNR of the dataset:{np.mean(snrs)}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def output_snr_with_audio(idx):\n",
" file_idx = file_idxs[idx]\n",
" file_name = file_names[file_idx]\n",
" wav, sr = sf.read(file_name)\n",
" # multi channel to single channel\n",
" if len(wav.shape) == 2:\n",
" wav = wav[:, 0]\n",
" print(f\" > {file_name} - snr:{snrs[file_idx]}\")\n",
" IPython.display.display(IPython.display.Audio(wav, rate=sr))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# find worse SNR files\n",
"N = 10 # number of files to fetch\n",
"for i in range(N):\n",
" output_snr_with_audio(i)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# find best recordings\n",
"N = 10 # number of files to fetch\n",
"for i in range(N):\n",
" output_snr_with_audio(-i-1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.hist(snrs, bins=100)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|