Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from trainer import Trainer, TrainerArgs | |
from TTS.tts.configs.shared_configs import BaseDatasetConfig | |
from TTS.tts.configs.vits_config import VitsConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.models.vits import Vits, VitsArgs, VitsAudioConfig | |
from TTS.tts.utils.speakers import SpeakerManager | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.utils.audio import AudioProcessor | |
output_path = os.path.dirname(os.path.abspath(__file__)) | |
dataset_config = BaseDatasetConfig( | |
formatter="vctk", meta_file_train="", language="en-us", path=os.path.join(output_path, "../VCTK/") | |
) | |
audio_config = VitsAudioConfig( | |
sample_rate=22050, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None | |
) | |
vitsArgs = VitsArgs( | |
use_speaker_embedding=True, | |
) | |
config = VitsConfig( | |
model_args=vitsArgs, | |
audio=audio_config, | |
run_name="vits_vctk", | |
batch_size=32, | |
eval_batch_size=16, | |
batch_group_size=5, | |
num_loader_workers=4, | |
num_eval_loader_workers=4, | |
run_eval=True, | |
test_delay_epochs=-1, | |
epochs=1000, | |
text_cleaner="english_cleaners", | |
use_phonemes=True, | |
phoneme_language="en", | |
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
compute_input_seq_cache=True, | |
print_step=25, | |
print_eval=False, | |
mixed_precision=True, | |
max_text_len=325, # change this if you have a larger VRAM than 16GB | |
output_path=output_path, | |
datasets=[dataset_config], | |
cudnn_benchmark=False, | |
) | |
# INITIALIZE THE AUDIO PROCESSOR | |
# Audio processor is used for feature extraction and audio I/O. | |
# It mainly serves to the dataloader and the training loggers. | |
ap = AudioProcessor.init_from_config(config) | |
# INITIALIZE THE TOKENIZER | |
# Tokenizer is used to convert text to sequences of token IDs. | |
# config is updated with the default characters if not defined in the config. | |
tokenizer, config = TTSTokenizer.init_from_config(config) | |
# LOAD DATA SAMPLES | |
# Each sample is a list of ```[text, audio_file_path, speaker_name]``` | |
# You can define your custom sample loader returning the list of samples. | |
# Or define your custom formatter and pass it to the `load_tts_samples`. | |
# Check `TTS.tts.datasets.load_tts_samples` for more details. | |
train_samples, eval_samples = load_tts_samples( | |
dataset_config, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# init speaker manager for multi-speaker training | |
# it maps speaker-id to speaker-name in the model and data-loader | |
speaker_manager = SpeakerManager() | |
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") | |
config.model_args.num_speakers = speaker_manager.num_speakers | |
# init model | |
model = Vits(config, ap, tokenizer, speaker_manager) | |
# init the trainer and 🚀 | |
trainer = Trainer( | |
TrainerArgs(), | |
config, | |
output_path, | |
model=model, | |
train_samples=train_samples, | |
eval_samples=eval_samples, | |
) | |
trainer.fit() | |