Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from TTS.tts.configs.delightful_tts_config import DelightfulTTSConfig | |
from TTS.tts.layers.delightful_tts.acoustic_model import AcousticModel | |
from TTS.tts.models.delightful_tts import DelightfulTtsArgs, VocoderConfig | |
from TTS.tts.utils.helpers import rand_segments | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.vocoder.models.hifigan_generator import HifiganGenerator | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
args = DelightfulTtsArgs() | |
v_args = VocoderConfig() | |
config = DelightfulTTSConfig( | |
model_args=args, | |
# compute_f0=True, | |
# f0_cache_path=os.path.join(output_path, "f0_cache"), | |
text_cleaner="english_cleaners", | |
use_phonemes=True, | |
phoneme_language="en-us", | |
# phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
) | |
tokenizer, config = TTSTokenizer.init_from_config(config) | |
def test_acoustic_model(): | |
dummy_tokens = torch.rand((1, 41)).long().to(device) | |
dummy_text_lens = torch.tensor([41]).long().to(device) | |
dummy_spec = torch.rand((1, 100, 207)).to(device) | |
dummy_spec_lens = torch.tensor([207]).to(device) | |
dummy_pitch = torch.rand((1, 1, 207)).long().to(device) | |
dummy_energy = torch.rand((1, 1, 207)).long().to(device) | |
args.out_channels = 100 | |
args.num_mels = 100 | |
acoustic_model = AcousticModel(args=args, tokenizer=tokenizer, speaker_manager=None).to(device) | |
acoustic_model = acoustic_model.train() | |
output = acoustic_model( | |
tokens=dummy_tokens, | |
src_lens=dummy_text_lens, | |
mel_lens=dummy_spec_lens, | |
mels=dummy_spec, | |
pitches=dummy_pitch, | |
energies=dummy_energy, | |
attn_priors=None, | |
d_vectors=None, | |
speaker_idx=None, | |
) | |
assert list(output["model_outputs"].shape) == [1, 207, 100] | |
# output["model_outputs"].sum().backward() | |
def test_hifi_decoder(): | |
dummy_input = torch.rand((1, 207, 100)).to(device) | |
dummy_spec_lens = torch.tensor([207]).to(device) | |
waveform_decoder = HifiganGenerator( | |
100, | |
1, | |
v_args.resblock_type_decoder, | |
v_args.resblock_dilation_sizes_decoder, | |
v_args.resblock_kernel_sizes_decoder, | |
v_args.upsample_kernel_sizes_decoder, | |
v_args.upsample_initial_channel_decoder, | |
v_args.upsample_rates_decoder, | |
inference_padding=0, | |
cond_channels=0, | |
conv_pre_weight_norm=False, | |
conv_post_weight_norm=False, | |
conv_post_bias=False, | |
).to(device) | |
waveform_decoder = waveform_decoder.train() | |
vocoder_input_slices, slice_ids = rand_segments( # pylint: disable=unused-variable | |
x=dummy_input.transpose(1, 2), | |
x_lengths=dummy_spec_lens, | |
segment_size=32, | |
let_short_samples=True, | |
pad_short=True, | |
) | |
outputs = waveform_decoder(x=vocoder_input_slices.detach()) | |
assert list(outputs.shape) == [1, 1, 8192] | |
# outputs.sum().backward() | |