import os import torch from tests import get_tests_input_path, get_tests_output_path, get_tests_path from TTS.config import BaseAudioConfig from TTS.utils.audio import AudioProcessor from TTS.vocoder.layers.losses import MelganFeatureLoss, MultiScaleSTFTLoss, STFTLoss, TorchSTFT TESTS_PATH = get_tests_path() OUT_PATH = os.path.join(get_tests_output_path(), "audio_tests") os.makedirs(OUT_PATH, exist_ok=True) WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") ap = AudioProcessor(**BaseAudioConfig().to_dict()) def test_torch_stft(): torch_stft = TorchSTFT(ap.fft_size, ap.hop_length, ap.win_length) # librosa stft wav = ap.load_wav(WAV_FILE) M_librosa = abs(ap._stft(wav)) # pylint: disable=protected-access # torch stft wav = torch.from_numpy(wav[None, :]).float() M_torch = torch_stft(wav) # check the difference b/w librosa and torch outputs assert (M_librosa - M_torch[0].data.numpy()).max() < 1e-5 def test_stft_loss(): stft_loss = STFTLoss(ap.fft_size, ap.hop_length, ap.win_length) wav = ap.load_wav(WAV_FILE) wav = torch.from_numpy(wav[None, :]).float() loss_m, loss_sc = stft_loss(wav, wav) assert loss_m + loss_sc == 0 loss_m, loss_sc = stft_loss(wav, torch.rand_like(wav)) assert loss_sc < 1.0 assert loss_m + loss_sc > 0 def test_multiscale_stft_loss(): stft_loss = MultiScaleSTFTLoss( [ap.fft_size // 2, ap.fft_size, ap.fft_size * 2], [ap.hop_length // 2, ap.hop_length, ap.hop_length * 2], [ap.win_length // 2, ap.win_length, ap.win_length * 2], ) wav = ap.load_wav(WAV_FILE) wav = torch.from_numpy(wav[None, :]).float() loss_m, loss_sc = stft_loss(wav, wav) assert loss_m + loss_sc == 0 loss_m, loss_sc = stft_loss(wav, torch.rand_like(wav)) assert loss_sc < 1.0 assert loss_m + loss_sc > 0 def test_melgan_feature_loss(): feats_real = [] feats_fake = [] # if all the features are different. for _ in range(5): # different scales scale_feats_real = [] scale_feats_fake = [] for _ in range(4): # different layers scale_feats_real.append(torch.rand([3, 5, 7])) scale_feats_fake.append(torch.rand([3, 5, 7])) feats_real.append(scale_feats_real) feats_fake.append(scale_feats_fake) loss_func = MelganFeatureLoss() loss = loss_func(feats_fake, feats_real) assert loss.item() <= 1.0 feats_real = [] feats_fake = [] # if all the features are the same for _ in range(5): # different scales scale_feats_real = [] scale_feats_fake = [] for _ in range(4): # different layers tensor = torch.rand([3, 5, 7]) scale_feats_real.append(tensor) scale_feats_fake.append(tensor) feats_real.append(scale_feats_real) feats_fake.append(scale_feats_fake) loss_func = MelganFeatureLoss() loss = loss_func(feats_fake, feats_real) assert loss.item() == 0