import os import unittest import numpy as np import torch from tests import get_tests_input_path from TTS.config import load_config from TTS.encoder.utils.generic_utils import setup_encoder_model from TTS.encoder.utils.io import save_checkpoint from TTS.tts.utils.speakers import SpeakerManager from TTS.utils.audio import AudioProcessor encoder_config_path = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json") encoder_model_path = os.path.join(get_tests_input_path(), "checkpoint_0.pth") sample_wav_path = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0001.wav") sample_wav_path2 = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0002.wav") d_vectors_file_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.json") d_vectors_file_pth_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.pth") class SpeakerManagerTest(unittest.TestCase): """Test SpeakerManager for loading embedding files and computing d_vectors from waveforms""" @staticmethod def test_speaker_embedding(): # load config config = load_config(encoder_config_path) config.audio.resample = True # create a dummy speaker encoder model = setup_encoder_model(config) save_checkpoint(model, None, None, get_tests_input_path(), 0) # load audio processor and speaker encoder ap = AudioProcessor(**config.audio) manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) # load a sample audio and compute embedding waveform = ap.load_wav(sample_wav_path) mel = ap.melspectrogram(waveform) d_vector = manager.compute_embeddings(mel) assert d_vector.shape[1] == 256 # compute d_vector directly from an input file d_vector = manager.compute_embedding_from_clip(sample_wav_path) d_vector2 = manager.compute_embedding_from_clip(sample_wav_path) d_vector = torch.FloatTensor(d_vector) d_vector2 = torch.FloatTensor(d_vector2) assert d_vector.shape[0] == 256 assert (d_vector - d_vector2).sum() == 0.0 # compute d_vector from a list of wav files. d_vector3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2]) d_vector3 = torch.FloatTensor(d_vector3) assert d_vector3.shape[0] == 256 assert (d_vector - d_vector3).sum() != 0.0 # remove dummy model os.remove(encoder_model_path) def test_dvector_file_processing(self): manager = SpeakerManager(d_vectors_file_path=d_vectors_file_path) self.assertEqual(manager.num_speakers, 1) self.assertEqual(manager.embedding_dim, 256) manager = SpeakerManager(d_vectors_file_path=d_vectors_file_pth_path) self.assertEqual(manager.num_speakers, 1) self.assertEqual(manager.embedding_dim, 256) d_vector = manager.get_embedding_by_clip(manager.clip_ids[0]) assert len(d_vector) == 256 d_vectors = manager.get_embeddings_by_name(manager.speaker_names[0]) assert len(d_vectors[0]) == 256 d_vector1 = manager.get_mean_embedding(manager.speaker_names[0], num_samples=2, randomize=True) assert len(d_vector1) == 256 d_vector2 = manager.get_mean_embedding(manager.speaker_names[0], num_samples=2, randomize=False) assert len(d_vector2) == 256 assert np.sum(np.array(d_vector1) - np.array(d_vector2)) != 0