import os import unittest import numpy as np import torch from tests import get_tests_input_path from TTS.config import load_config from TTS.encoder.utils.generic_utils import setup_encoder_model from TTS.encoder.utils.io import save_checkpoint from TTS.tts.utils.managers import EmbeddingManager from TTS.utils.audio import AudioProcessor encoder_config_path = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json") encoder_model_path = os.path.join(get_tests_input_path(), "checkpoint_0.pth") sample_wav_path = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0001.wav") sample_wav_path2 = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0002.wav") embedding_file_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.json") embeddings_file_path2 = os.path.join(get_tests_input_path(), "../data/dummy_speakers2.json") embeddings_file_pth_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.pth") class EmbeddingManagerTest(unittest.TestCase): """Test emEeddingManager for loading embedding files and computing embeddings from waveforms""" @staticmethod def test_speaker_embedding(): # load config config = load_config(encoder_config_path) config.audio.resample = True # create a dummy speaker encoder model = setup_encoder_model(config) save_checkpoint(model, None, None, get_tests_input_path(), 0) # load audio processor and speaker encoder manager = EmbeddingManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) # load a sample audio and compute embedding ap = AudioProcessor(**config.audio) waveform = ap.load_wav(sample_wav_path) mel = ap.melspectrogram(waveform) embedding = manager.compute_embeddings(mel) assert embedding.shape[1] == 256 # compute embedding directly from an input file embedding = manager.compute_embedding_from_clip(sample_wav_path) embedding2 = manager.compute_embedding_from_clip(sample_wav_path) embedding = torch.FloatTensor(embedding) embedding2 = torch.FloatTensor(embedding2) assert embedding.shape[0] == 256 assert (embedding - embedding2).sum() == 0.0 # compute embedding from a list of wav files. embedding3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2]) embedding3 = torch.FloatTensor(embedding3) assert embedding3.shape[0] == 256 assert (embedding - embedding3).sum() != 0.0 # remove dummy model os.remove(encoder_model_path) def test_embedding_file_processing(self): # pylint: disable=no-self-use manager = EmbeddingManager(embedding_file_path=embeddings_file_pth_path) # test embedding querying embedding = manager.get_embedding_by_clip(manager.clip_ids[0]) assert len(embedding) == 256 embeddings = manager.get_embeddings_by_name(manager.embedding_names[0]) assert len(embeddings[0]) == 256 embedding1 = manager.get_mean_embedding(manager.embedding_names[0], num_samples=2, randomize=True) assert len(embedding1) == 256 embedding2 = manager.get_mean_embedding(manager.embedding_names[0], num_samples=2, randomize=False) assert len(embedding2) == 256 assert np.sum(np.array(embedding1) - np.array(embedding2)) != 0 def test_embedding_file_loading(self): # test loading a json file manager = EmbeddingManager(embedding_file_path=embedding_file_path) self.assertEqual(manager.num_embeddings, 384) self.assertEqual(manager.embedding_dim, 256) # test loading a pth file manager = EmbeddingManager(embedding_file_path=embeddings_file_pth_path) self.assertEqual(manager.num_embeddings, 384) self.assertEqual(manager.embedding_dim, 256) # test loading a pth files with duplicate embedding keys with self.assertRaises(Exception) as context: manager = EmbeddingManager(embedding_file_path=[embeddings_file_pth_path, embeddings_file_pth_path]) self.assertTrue("Duplicate embedding names" in str(context.exception)) # test loading embedding files with different embedding keys manager = EmbeddingManager(embedding_file_path=[embeddings_file_pth_path, embeddings_file_path2]) self.assertEqual(manager.embedding_dim, 256) self.assertEqual(manager.num_embeddings, 384 * 2)