import unittest import torch as T from tests import get_tests_input_path from TTS.encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss from TTS.encoder.models.lstm import LSTMSpeakerEncoder from TTS.encoder.models.resnet import ResNetSpeakerEncoder file_path = get_tests_input_path() class LSTMSpeakerEncoderTests(unittest.TestCase): # pylint: disable=R0201 def test_in_out(self): dummy_input = T.rand(4, 80, 20) # B x D x T dummy_hidden = [T.rand(2, 4, 128), T.rand(2, 4, 128)] model = LSTMSpeakerEncoder(input_dim=80, proj_dim=256, lstm_dim=768, num_lstm_layers=3) # computing d vectors output = model.forward(dummy_input) assert output.shape[0] == 4 assert output.shape[1] == 256 output = model.inference(dummy_input) assert output.shape[0] == 4 assert output.shape[1] == 256 # compute d vectors by passing LSTM hidden # output = model.forward(dummy_input, dummy_hidden) # assert output.shape[0] == 4 # assert output.shape[1] == 20 # assert output.shape[2] == 256 # check normalization output_norm = T.nn.functional.normalize(output, dim=1, p=2) assert_diff = (output_norm - output).sum().item() assert output.type() == "torch.FloatTensor" assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}" # compute d for a given batch dummy_input = T.rand(1, 80, 240) # B x T x D output = model.compute_embedding(dummy_input, num_frames=160, num_eval=5) assert output.shape[0] == 1 assert output.shape[1] == 256 assert len(output.shape) == 2 class ResNetSpeakerEncoderTests(unittest.TestCase): # pylint: disable=R0201 def test_in_out(self): dummy_input = T.rand(4, 80, 20) # B x D x T dummy_hidden = [T.rand(2, 4, 128), T.rand(2, 4, 128)] model = ResNetSpeakerEncoder(input_dim=80, proj_dim=256) # computing d vectors output = model.forward(dummy_input) assert output.shape[0] == 4 assert output.shape[1] == 256 output = model.forward(dummy_input, l2_norm=True) assert output.shape[0] == 4 assert output.shape[1] == 256 # check normalization output_norm = T.nn.functional.normalize(output, dim=1, p=2) assert_diff = (output_norm - output).sum().item() assert output.type() == "torch.FloatTensor" assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}" # compute d for a given batch dummy_input = T.rand(1, 80, 240) # B x D x T output = model.compute_embedding(dummy_input, num_frames=160, num_eval=10) assert output.shape[0] == 1 assert output.shape[1] == 256 assert len(output.shape) == 2 class GE2ELossTests(unittest.TestCase): # pylint: disable=R0201 def test_in_out(self): # check random input dummy_input = T.rand(4, 5, 64) # num_speaker x num_utterance x dim loss = GE2ELoss(loss_method="softmax") output = loss.forward(dummy_input) assert output.item() >= 0.0 # check all zeros dummy_input = T.ones(4, 5, 64) # num_speaker x num_utterance x dim loss = GE2ELoss(loss_method="softmax") output = loss.forward(dummy_input) assert output.item() >= 0.0 # check speaker loss with orthogonal d-vectors dummy_input = T.empty(3, 64) dummy_input = T.nn.init.orthogonal_(dummy_input) dummy_input = T.cat( [ dummy_input[0].repeat(5, 1, 1).transpose(0, 1), dummy_input[1].repeat(5, 1, 1).transpose(0, 1), dummy_input[2].repeat(5, 1, 1).transpose(0, 1), ] ) # num_speaker x num_utterance x dim loss = GE2ELoss(loss_method="softmax") output = loss.forward(dummy_input) assert output.item() < 0.005 class AngleProtoLossTests(unittest.TestCase): # pylint: disable=R0201 def test_in_out(self): # check random input dummy_input = T.rand(4, 5, 64) # num_speaker x num_utterance x dim loss = AngleProtoLoss() output = loss.forward(dummy_input) assert output.item() >= 0.0 # check all zeros dummy_input = T.ones(4, 5, 64) # num_speaker x num_utterance x dim loss = AngleProtoLoss() output = loss.forward(dummy_input) assert output.item() >= 0.0 # check speaker loss with orthogonal d-vectors dummy_input = T.empty(3, 64) dummy_input = T.nn.init.orthogonal_(dummy_input) dummy_input = T.cat( [ dummy_input[0].repeat(5, 1, 1).transpose(0, 1), dummy_input[1].repeat(5, 1, 1).transpose(0, 1), dummy_input[2].repeat(5, 1, 1).transpose(0, 1), ] ) # num_speaker x num_utterance x dim loss = AngleProtoLoss() output = loss.forward(dummy_input) assert output.item() < 0.005 class SoftmaxAngleProtoLossTests(unittest.TestCase): # pylint: disable=R0201 def test_in_out(self): embedding_dim = 64 num_speakers = 5 batch_size = 4 dummy_label = T.randint(low=0, high=num_speakers, size=(batch_size, num_speakers)) # check random input dummy_input = T.rand(batch_size, num_speakers, embedding_dim) # num_speaker x num_utterance x dim loss = SoftmaxAngleProtoLoss(embedding_dim=embedding_dim, n_speakers=num_speakers) output = loss.forward(dummy_input, dummy_label) assert output.item() >= 0.0 # check all zeros dummy_input = T.ones(batch_size, num_speakers, embedding_dim) # num_speaker x num_utterance x dim loss = SoftmaxAngleProtoLoss(embedding_dim=embedding_dim, n_speakers=num_speakers) output = loss.forward(dummy_input, dummy_label) assert output.item() >= 0.0