Spaces:
Sleeping
Sleeping
Cryptic
commited on
Commit
·
90bcc62
1
Parent(s):
0d062b8
test
Browse files- app.py +16 -22
- requirements.txt +4 -4
app.py
CHANGED
@@ -5,12 +5,9 @@ import librosa
|
|
5 |
import numpy as np
|
6 |
import soundfile as sf
|
7 |
import torch
|
8 |
-
|
9 |
from transformers import pipeline
|
10 |
|
11 |
-
# Initialize Flask app
|
12 |
-
app = Flask(__name__)
|
13 |
-
|
14 |
# Load models globally to avoid reloading on every request
|
15 |
device = 0 if torch.cuda.is_available() else -1
|
16 |
models = {
|
@@ -27,12 +24,12 @@ def load_and_convert_audio(audio_path):
|
|
27 |
sf.write(temp_wav.name, audio_data, sample_rate, format='WAV')
|
28 |
return temp_wav.name
|
29 |
|
30 |
-
def process_audio(
|
31 |
"""Process audio file and return transcription and summary"""
|
32 |
results = {}
|
33 |
|
34 |
try:
|
35 |
-
temp_wav_path = load_and_convert_audio(
|
36 |
|
37 |
# Transcription
|
38 |
transcription = models['transcriber'](temp_wav_path, return_timestamps=True)
|
@@ -48,7 +45,7 @@ def process_audio(audio_path):
|
|
48 |
results['summary'] = ' '.join(summaries)
|
49 |
|
50 |
except Exception as e:
|
51 |
-
return {'error': str(e)}
|
52 |
|
53 |
finally:
|
54 |
if os.path.exists(temp_wav_path):
|
@@ -56,21 +53,18 @@ def process_audio(audio_path):
|
|
56 |
|
57 |
return results
|
58 |
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
audio_file.save(temp_audio_path)
|
69 |
-
|
70 |
-
results = process_audio(temp_audio_path)
|
71 |
-
os.remove(temp_audio_path) # Clean up the temporary audio file
|
72 |
-
|
73 |
-
return jsonify(results)
|
74 |
|
75 |
if __name__ == "__main__":
|
76 |
-
|
|
|
5 |
import numpy as np
|
6 |
import soundfile as sf
|
7 |
import torch
|
8 |
+
import gradio as gr
|
9 |
from transformers import pipeline
|
10 |
|
|
|
|
|
|
|
11 |
# Load models globally to avoid reloading on every request
|
12 |
device = 0 if torch.cuda.is_available() else -1
|
13 |
models = {
|
|
|
24 |
sf.write(temp_wav.name, audio_data, sample_rate, format='WAV')
|
25 |
return temp_wav.name
|
26 |
|
27 |
+
def process_audio(audio_file):
|
28 |
"""Process audio file and return transcription and summary"""
|
29 |
results = {}
|
30 |
|
31 |
try:
|
32 |
+
temp_wav_path = load_and_convert_audio(audio_file.name)
|
33 |
|
34 |
# Transcription
|
35 |
transcription = models['transcriber'](temp_wav_path, return_timestamps=True)
|
|
|
45 |
results['summary'] = ' '.join(summaries)
|
46 |
|
47 |
except Exception as e:
|
48 |
+
return {'error': str(e)} # Return error message if something goes wrong
|
49 |
|
50 |
finally:
|
51 |
if os.path.exists(temp_wav_path):
|
|
|
53 |
|
54 |
return results
|
55 |
|
56 |
+
def gradio_interface(audio):
|
57 |
+
"""Gradio interface function"""
|
58 |
+
return process_audio(audio)
|
59 |
|
60 |
+
# Create Gradio interface
|
61 |
+
iface = gr.Interface(
|
62 |
+
fn=gradio_interface,
|
63 |
+
inputs=gr.inputs.Audio(source="upload", type="file", label="Upload Audio File"),
|
64 |
+
outputs=["json"],
|
65 |
+
title="Audio Transcription and Summarization",
|
66 |
+
description="Upload an audio file to get its transcription and summary."
|
67 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
+
iface.launch()
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
librosa
|
4 |
soundfile
|
|
|
5 |
numpy
|
6 |
-
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
|
|
3 |
soundfile
|
4 |
+
transformers
|
5 |
numpy
|
6 |
+
flask
|