AstraBert commited on
Commit
bcc7abd
·
1 Parent(s): 55c7bc1

build commit

Browse files
Files changed (5) hide show
  1. README.md +5 -3
  2. app.py +62 -0
  3. generated_img.png +0 -0
  4. imgen.py +4 -0
  5. requirements.txt +3 -0
README.md CHANGED
@@ -4,10 +4,12 @@ emoji: 🐠
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: gradio
7
- sdk_version: 4.26.0
8
  app_file: app.py
9
- pinned: false
10
  license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 4.25.0
8
  app_file: app.py
9
+ pinned: true
10
  license: mit
11
  ---
12
 
13
+ # awesome-tiny-sd
14
+
15
+ Tiny stable diffusion chatbot based on [segmind/small-sd](https://huggingface.co/segmind/small-sd) to generate image upon text prompts.
app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import time
3
+ from imgen import *
4
+
5
+ def print_like_dislike(x: gr.LikeData):
6
+ print(x.index, x.value, x.liked)
7
+
8
+ def add_message(history, message):
9
+ if len(message["files"]) > 0:
10
+ history.append((message["files"], None))
11
+ if message["text"] is not None and message["text"] != "":
12
+ history.append((message["text"], None))
13
+ return history, gr.MultimodalTextbox(value=None, interactive=False)
14
+
15
+
16
+
17
+ def bot(history):
18
+ if type(history[-1][0]) != tuple:
19
+ try:
20
+ prompt = history[-1][0]
21
+ image = pipeline(prompt).images[0]
22
+ image.save("generated_image.png")
23
+ response = ("generated_img.png",)
24
+ history[-1][1] = response
25
+ yield history
26
+ except Exception as e:
27
+ response = f"Sorry, the error '{e}' occured while generating the response; check [troubleshooting documentation](https://astrabert.github.io/awesome-tiny-sd/#troubleshooting) for more"
28
+ history[-1][1] = ""
29
+ for character in response:
30
+ history[-1][1] += character
31
+ time.sleep(0.05)
32
+ yield history
33
+ if type(history[-1][0]) == tuple:
34
+ response = f"Sorry, this version still does not support uploaded files :("
35
+ history[-1][1] = ""
36
+ for character in response:
37
+ history[-1][1] += character
38
+ time.sleep(0.05)
39
+ yield history
40
+
41
+ with gr.Blocks() as demo:
42
+ chatbot = gr.Chatbot(
43
+ [[None, ("Hi, I am awesome-tiny-sd, a little stable diffusion model that lets you generate images:blush:\nJust write me a prompt, I'll generate what you ask for:heart:",)]],
44
+ label="awesome-tiny-sd",
45
+ elem_id="chatbot",
46
+ bubble_full_width=False,
47
+ )
48
+
49
+ chat_input = gr.MultimodalTextbox(interactive=True, file_types=["pdf"], placeholder="Enter your image-generating prompt...", show_label=False)
50
+
51
+ chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
52
+ bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
53
+ bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
54
+
55
+ chatbot.like(print_like_dislike, None, None)
56
+ clear = gr.ClearButton(chatbot)
57
+
58
+ demo.queue()
59
+ if __name__ == "__main__":
60
+ demo.launch()
61
+
62
+
generated_img.png ADDED
imgen.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from diffusers import DiffusionPipeline
2
+ import torch
3
+
4
+ pipeline = DiffusionPipeline.from_pretrained("segmind/small-sd", torch_dtype=torch.float32)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio==4.25.0
2
+ diffusers==0.27.2
3
+ torch==2.1.2