import gradio as gr import pandas as pd from transformers import pipeline from load_models import models_and_tokenizers, models_checkpoints import spaces choice = {"ModelA": "", "ModelB": ""} dff = pd.read_csv("models.csv") dff.to_html("tab.html") def refreshfn() -> gr.HTML: df = pd.read_csv("models.csv") df.to_html("tab.html") f = open("tab.html") content = f.read() f.close() t = gr.HTML(content) return t def rewrite_csv_ordered_by_winning_rate(csv_path): # Read the input CSV df = pd.read_csv(csv_path) # Sort the DataFrame by WINNING_RATE in descending order df_sorted = df.sort_values(by="WINNING_RATE", ascending=False) # Save the sorted DataFrame to a new CSV file df_sorted.to_csv(csv_path, index=False) @spaces.GPU(duration=200) def run_inference(pipeline, prompt): response = pipeline(prompt) bot_message = response[0]["generated_text"] return bot_message def modelA_button(): global choice df = pd.read_csv("models.csv") df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"] += 1 df.loc[df["MODEL"] == choice["ModelA"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_PLAYED"] df.to_csv("models.csv", index=False) rewrite_csv_ordered_by_winning_rate("models.csv") def modelB_button(): global choice df = pd.read_csv("models.csv") df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"] += 1 df.loc[df["MODEL"] == choice["ModelB"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_PLAYED"] df.to_csv("models.csv", index=False) rewrite_csv_ordered_by_winning_rate("models.csv") import time def replyA(prompt, history, modelA): global choice choice["ModelA"] = modelA df = pd.read_csv("models.csv") df.loc[df["MODEL"] == modelA, "MATCHES_PLAYED"] += 1 df.to_csv("models.csv", index=False) pipeA = pipeline("text-generation", model=models_and_tokenizers[modelA][0], tokenizer=models_and_tokenizers[modelA][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device_map="cuda:0") responseA = run_inference(pipeA, prompt) r = '' for c in responseA: r+=c time.sleep(0.0001) yield r def replyB(prompt, history, modelB): global choice choice["ModelB"] = modelB df = pd.read_csv("models.csv") df.loc[df["MODEL"] == modelB, "MATCHES_PLAYED"] += 1 df.to_csv("models.csv", index=False) pipeB = pipeline("text-generation", model=models_and_tokenizers[modelB][0], tokenizer=models_and_tokenizers[modelB][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device_map="cuda:0") responseB = run_inference(pipeB, prompt) r = '' for c in responseB: r+=c time.sleep(0.0001) yield r modelAchoice = gr.Dropdown(models_checkpoints, label="Model A") modelBchoice = gr.Dropdown(models_checkpoints, label="Model B") with gr.Blocks() as demo2: f = open("tab.html") content = f.read() f.close() t = gr.HTML(content) btn = gr.Button("Refresh") btn.click(fn=refreshfn, inputs=None, outputs=t) accrdnA = gr.Accordion(label="Choose model A", open=False) accrdnB = gr.Accordion(label="Choose model B", open=False) chtbA = gr.Chatbot(label="Chat with Model A", height=150) chtbB = gr.Chatbot(label="Chat with Model B", height=150) with gr.Blocks() as demo1: with gr.Column(): gr.HTML("""