Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pymysql | |
import pandas as pd | |
import soundfile as sf | |
from audio_text import whisper_openai | |
from app_utils import voice_edit, extract_json_from_text, getname | |
import uuid | |
def get_total_number_of_products(): | |
pass | |
def search_products(search_query): | |
pass | |
# def get_total_number_of_products(): | |
# connection = connect_to_db() | |
# cursor = connection.cursor() | |
# # Execute SQL query to count total number of products | |
# sql = "SELECT COUNT(*) AS total_products FROM api_database" | |
# cursor.execute(sql) | |
# result = cursor.fetchone() | |
# total_products = result['total_products'] | |
# connection.close() | |
# return total_products | |
# def search_products(search_query): | |
# search_query = " " + search_query.lower() + " " | |
# connection = connect_to_db() | |
# cursor = connection.cursor() | |
# sql = """ | |
# SELECT * FROM api_database | |
# WHERE product_name LIKE %s OR description LIKE %s | |
# """ | |
# cursor.execute(sql, ('%' + search_query + '%', '%' + search_query + '%')) | |
# search_results = cursor.fetchall() | |
# connection.close() | |
# search_results_formatted = [] | |
# for result in search_results: | |
# search_results_formatted.append(list(result.values())) | |
# return search_results_formatted | |
def sample_fun(voice_input, product_id): | |
audio_path = str(uuid.uuid4().hex) + ".wav" | |
print(voice_input) | |
sample_rate,audio_data = voice_input | |
# audio_data = audio_data.reshape(-1, 1) | |
sf.write(audio_path, audio_data, sample_rate) | |
# print("Product ID:", product_id) | |
transcription = whisper_openai(audio_path) | |
# print("Transcription:", transcription) | |
prompt = voice_edit.format(text = transcription) | |
# print("Prompt:", prompt) | |
name = getname(prompt) | |
print("Name:", name) | |
try: | |
json_data = extract_json_from_text(name) | |
except Exception as e: | |
print(f"-->Exception occurred while extracting JSON: {str(e)}") | |
json_data['product_id'] = product_id | |
return json_data | |
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink)) as demo: | |
with gr.Tab("Edit by Audio"): | |
voice_input = gr.Audio(sources=["microphone"]) | |
prodcut_id = gr.Textbox(label="Enter Product ID") | |
with gr.Row(): | |
submit_button_tab_1 = gr.Button("Start") | |
with gr.Tab("Search Catalog"): | |
with gr.Row(): | |
total_no_of_products = gr.Textbox(value=str(get_total_number_of_products()),label="Total Products") | |
with gr.Row(): | |
embbed_text_search = gr.Textbox(label="Enter Product Name") | |
submit_button_tab_4 = gr.Button("Start") | |
dataframe_output_tab_4 = gr.Dataframe(headers=['id', 'barcode', 'brand', 'sub_brand', 'manufactured_by', 'product_name', | |
'weight', 'variant', 'net_content', 'price', 'parent_category', | |
'child_category', 'sub_child_category', 'images_paths', 'description', | |
'quantity', 'promotion_on_the_pack', 'type_of_packaging', 'mrp']) | |
submit_button_tab_1.click(fn=sample_fun,inputs=[voice_input,prodcut_id], outputs=prodcut_id) | |
submit_button_tab_4.click(fn=search_products,inputs=[embbed_text_search] ,outputs= dataframe_output_tab_4) | |
demo.launch(server_name="0.0.0.0",server_port=8007) |