Spaces:
Sleeping
Sleeping
# from whisper_jax import FlaxWhisperPipline | |
# import jax.numpy as jnp | |
# import whisper | |
# print(whisper.__file__) | |
from openai import OpenAI | |
from decouple import config | |
import os | |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") | |
client = OpenAI() | |
os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY | |
# def whisper_pipeline_tpu(audio): | |
# pipeline = FlaxWhisperPipline("openai/whisper-large-v3", dtype=jnp.bfloat16, batch_size=16) | |
# text = pipeline(audio) | |
# return text | |
# def whisper_pipeline(audio_path): | |
# model = whisper.load_model("medium") | |
# # load audio and pad/trim it to fit 30 seconds | |
# audio = whisper.load_audio(audio_path) | |
# audio = whisper.pad_or_trim(audio) | |
# # make log-Mel spectrogram and move to the same device as the model | |
# mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
# # detect the spoken language | |
# _, probs = model.detect_language(mel) | |
# print(f"Detected language: {max(probs, key=probs.get)}") | |
# # decode the audio | |
# options = whisper.DecodingOptions() | |
# result = whisper.decode(model, mel, options) | |
# # print the recognized text | |
# print(result.text) | |
# return result.text | |
def whisper_openai(audio_path): | |
audio_file= open(audio_path, "rb") | |
transcript = client.audio.transcriptions.create( | |
model="whisper-1", | |
file=audio_file | |
) | |
return transcript |