import gradio as gr import pymysql import pandas as pd import soundfile as sf from audio_text import whisper_openai from app_utils import voice_edit, extract_json_from_text, getname import uuid def get_total_number_of_products(): pass def search_products(search_query): pass # def get_total_number_of_products(): # connection = connect_to_db() # cursor = connection.cursor() # # Execute SQL query to count total number of products # sql = "SELECT COUNT(*) AS total_products FROM api_database" # cursor.execute(sql) # result = cursor.fetchone() # total_products = result['total_products'] # connection.close() # return total_products # def search_products(search_query): # search_query = " " + search_query.lower() + " " # connection = connect_to_db() # cursor = connection.cursor() # sql = """ # SELECT * FROM api_database # WHERE product_name LIKE %s OR description LIKE %s # """ # cursor.execute(sql, ('%' + search_query + '%', '%' + search_query + '%')) # search_results = cursor.fetchall() # connection.close() # search_results_formatted = [] # for result in search_results: # search_results_formatted.append(list(result.values())) # return search_results_formatted def sample_fun(voice_input, product_id): audio_path = str(uuid.uuid4().hex) + ".wav" print(voice_input) sample_rate,audio_data = voice_input # audio_data = audio_data.reshape(-1, 1) sf.write(audio_path, audio_data, sample_rate) # print("Product ID:", product_id) transcription = whisper_openai(audio_path) # print("Transcription:", transcription) prompt = voice_edit.format(text = transcription) # print("Prompt:", prompt) name = getname(prompt) print("Name:", name) try: json_data = extract_json_from_text(name) except Exception as e: print(f"-->Exception occurred while extracting JSON: {str(e)}") json_data['product_id'] = product_id return json_data with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink)) as demo: with gr.Tab("Edit by Audio"): voice_input = gr.Audio(sources=["microphone"]) prodcut_id = gr.Textbox(label="Enter Product ID") with gr.Row(): submit_button_tab_1 = gr.Button("Start") with gr.Tab("Search Catalog"): with gr.Row(): total_no_of_products = gr.Textbox(value=str(get_total_number_of_products()),label="Total Products") with gr.Row(): embbed_text_search = gr.Textbox(label="Enter Product Name") submit_button_tab_4 = gr.Button("Start") dataframe_output_tab_4 = gr.Dataframe(headers=['id', 'barcode', 'brand', 'sub_brand', 'manufactured_by', 'product_name', 'weight', 'variant', 'net_content', 'price', 'parent_category', 'child_category', 'sub_child_category', 'images_paths', 'description', 'quantity', 'promotion_on_the_pack', 'type_of_packaging', 'mrp']) submit_button_tab_1.click(fn=sample_fun,inputs=[voice_input,prodcut_id], outputs=prodcut_id) submit_button_tab_4.click(fn=search_products,inputs=[embbed_text_search] ,outputs= dataframe_output_tab_4) demo.launch(server_name="0.0.0.0",server_port=8007)