Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- README.md +2 -2
- app.py +7 -28
- requirements.txt +1 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: CLIP Interrogator
|
3 |
emoji: 🕵️♂️
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.8.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: CLIP Interrogator
|
3 |
emoji: 🕵️♂️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.8.0
|
8 |
app_file: app.py
|
app.py
CHANGED
@@ -1,16 +1,8 @@
|
|
1 |
import spaces
|
2 |
-
import torch
|
3 |
import gradio as gr
|
4 |
-
from
|
5 |
|
6 |
-
|
7 |
-
config = Config()
|
8 |
-
config.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
-
config.blip_offload = False if torch.cuda.is_available() else True
|
10 |
-
config.chunk_size = 2048
|
11 |
-
config.flavor_intermediate_count = 512
|
12 |
-
config.blip_num_beams = 64
|
13 |
-
ci = Interrogator(config)
|
14 |
css = """
|
15 |
#col-container {
|
16 |
margin: 0 auto;
|
@@ -20,31 +12,18 @@ css = """
|
|
20 |
|
21 |
|
22 |
@spaces.GPU
|
23 |
-
def infer(image,
|
24 |
image = image.convert('RGB')
|
25 |
-
|
26 |
-
prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors))
|
27 |
-
elif mode == 'classic':
|
28 |
-
prompt_result = ci.interrogate_classic(image)
|
29 |
-
else:
|
30 |
-
prompt_result = ci.interrogate_fast(image)
|
31 |
-
return prompt_result
|
32 |
|
33 |
|
34 |
with gr.Blocks(css=css) as demo:
|
35 |
with gr.Column(elem_id="col-container"):
|
36 |
gr.Markdown("# CLIP Interrogator")
|
37 |
-
input_image = gr.Image(type='pil'
|
38 |
with gr.Row():
|
39 |
-
mode_input = gr.Radio(['best', 'classic', 'fast'], label='Select mode', value='best')
|
40 |
flavor_input = gr.Slider(minimum=2, maximum=48, step=2, value=32, label='best mode max flavors')
|
41 |
run_button = gr.Button("Submit")
|
42 |
output_text = gr.Textbox(label="Description Output")
|
43 |
-
run_button.click(
|
44 |
-
|
45 |
-
inputs=[input_image, mode_input, flavor_input],
|
46 |
-
outputs=[output_text],
|
47 |
-
concurrency_limit=10
|
48 |
-
)
|
49 |
-
|
50 |
-
demo.queue().launch()
|
|
|
1 |
import spaces
|
|
|
2 |
import gradio as gr
|
3 |
+
from panna import CLIPInterrogator
|
4 |
|
5 |
+
model = CLIPInterrogator()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
css = """
|
7 |
#col-container {
|
8 |
margin: 0 auto;
|
|
|
12 |
|
13 |
|
14 |
@spaces.GPU
|
15 |
+
def infer(image, best_max_flavors):
|
16 |
image = image.convert('RGB')
|
17 |
+
return model.image2text([image], best_max_flavors=best_max_flavors)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
with gr.Blocks(css=css) as demo:
|
21 |
with gr.Column(elem_id="col-container"):
|
22 |
gr.Markdown("# CLIP Interrogator")
|
23 |
+
input_image = gr.Image(type='pil')
|
24 |
with gr.Row():
|
|
|
25 |
flavor_input = gr.Slider(minimum=2, maximum=48, step=2, value=32, label='best mode max flavors')
|
26 |
run_button = gr.Button("Submit")
|
27 |
output_text = gr.Textbox(label="Description Output")
|
28 |
+
run_button.click(fn=infer, inputs=[input_image, flavor_input], outputs=[output_text], concurrency_limit=10)
|
29 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -3,3 +3,4 @@ torch
|
|
3 |
torchvision
|
4 |
spaces
|
5 |
clip-interrogator
|
|
|
|
3 |
torchvision
|
4 |
spaces
|
5 |
clip-interrogator
|
6 |
+
panna
|