|
import gradio as gr |
|
from diffusers.utils import load_image |
|
import spaces |
|
from panna import ControlNetSD3 |
|
|
|
model = ControlNetSD3(condition_type="canny") |
|
title = ("# [ControlNet SD3](https://huggingface.co/docs/diffusers/en/api/pipelines/controlnet_sd3) (Tile Conditioning)\n" |
|
"The demo is part of [panna](https://github.com/asahi417/panna) project.") |
|
example_files = [] |
|
for n in range(1, 10): |
|
load_image(f"https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/resolve/main/assets/examples/demo{n:0>2}.jpg").save(f"demo{n:0>2}.jpg") |
|
example_files.append(f"demo{n:0>2}.jpg") |
|
|
|
|
|
@spaces.GPU() |
|
def infer(init_image, prompt, negative_prompt, seed, guidance_scale, controlnet_conditioning_scale, num_inference_steps): |
|
return model.text2image( |
|
image=[init_image], |
|
prompt=[prompt], |
|
negative_prompt=[negative_prompt], |
|
guidance_scale=guidance_scale, |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
num_inference_steps=num_inference_steps, |
|
seed=seed |
|
)[0] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(title) |
|
with gr.Row(): |
|
prompt = gr.Text(label="Prompt", show_label=True, max_lines=1, placeholder="Enter your prompt", container=False) |
|
run_button = gr.Button("Run", scale=0) |
|
with gr.Row(): |
|
init_image = gr.Image(label="Input Image", type='pil') |
|
result = gr.Image(label="Result") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text(label="Negative Prompt", max_lines=1, placeholder="Enter a negative prompt") |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7) |
|
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning scale", minimum=0.0, maximum=1.0, step=0.05, value=0.5) |
|
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=28) |
|
examples = gr.Examples(examples=example_files, inputs=[init_image]) |
|
gr.on( |
|
triggers=[run_button.click, prompt.submit, negative_prompt.submit], |
|
fn=infer, |
|
inputs=[init_image, prompt, negative_prompt, seed, guidance_scale, controlnet_conditioning_scale, num_inference_steps], |
|
outputs=[result] |
|
) |
|
demo.launch(server_name="0.0.0.0") |
|
|