Spaces:
Build error
Build error
Commit
·
29572cc
1
Parent(s):
858279b
Upload extract_landmarks.py
Browse files- extract_landmarks.py +77 -0
extract_landmarks.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from landmark_utils import detect_frames_track
|
4 |
+
|
5 |
+
def detect_track(video):
|
6 |
+
vidcap = cv2.VideoCapture(video)
|
7 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
8 |
+
frames = []
|
9 |
+
while True:
|
10 |
+
success, image = vidcap.read()
|
11 |
+
if success:
|
12 |
+
frames.append(image)
|
13 |
+
else:
|
14 |
+
break
|
15 |
+
raw_data = detect_frames_track(frames, fps, video)
|
16 |
+
|
17 |
+
vidcap.release()
|
18 |
+
return np.array(raw_data)
|
19 |
+
|
20 |
+
def extract_landmark(video):
|
21 |
+
raw_data = detect_track(video)
|
22 |
+
print("video=",video)
|
23 |
+
if len(raw_data) == 0:
|
24 |
+
pass
|
25 |
+
else:
|
26 |
+
np.savetxt(video + ".txt", raw_data, fmt='%1.5f')
|
27 |
+
path = video + ".txt"
|
28 |
+
print(path)
|
29 |
+
return path
|
30 |
+
|
31 |
+
def get_data_for_test(path, fake, block): # fake:manipulated=1 original=0
|
32 |
+
file = path
|
33 |
+
x = []
|
34 |
+
x_diff = []
|
35 |
+
y = []
|
36 |
+
|
37 |
+
video_y = []
|
38 |
+
count_y = {}
|
39 |
+
sample_to_video = []
|
40 |
+
|
41 |
+
# for file in tqdm(files):
|
42 |
+
vectors = np.loadtxt(file)
|
43 |
+
video_y.append(fake)
|
44 |
+
|
45 |
+
for i in range(0, vectors.shape[0] - block, block):
|
46 |
+
vec = vectors[i:i + block, :]
|
47 |
+
x.append(vec)
|
48 |
+
vec_next = vectors[i + 1:i + block, :]
|
49 |
+
vec_next = np.pad(vec_next, ((0, 1), (0, 0)), 'constant', constant_values=(0, 0))
|
50 |
+
vec_diff = (vec_next - vec)[:block - 1, :]
|
51 |
+
x_diff.append(vec_diff)
|
52 |
+
|
53 |
+
y.append(fake)
|
54 |
+
|
55 |
+
# Dict for counting number of samples in video
|
56 |
+
if file not in count_y:
|
57 |
+
count_y[file] = 1
|
58 |
+
else:
|
59 |
+
count_y[file] += 1
|
60 |
+
|
61 |
+
sample_to_video.append(file)
|
62 |
+
return np.array(x), np.array(x_diff), np.array(y), np.array(video_y), np.array(sample_to_video), count_y
|
63 |
+
|
64 |
+
def merge_video_prediction(mix_prediction, s2v, vc):
|
65 |
+
prediction_video = []
|
66 |
+
pre_count = {}
|
67 |
+
for p, v_label in zip(mix_prediction, s2v):
|
68 |
+
p_bi = 0
|
69 |
+
if p >= 0.5:
|
70 |
+
p_bi = 1
|
71 |
+
if v_label in pre_count:
|
72 |
+
pre_count[v_label] += p_bi
|
73 |
+
else:
|
74 |
+
pre_count[v_label] = p_bi
|
75 |
+
for key in pre_count.keys():
|
76 |
+
prediction_video.append(pre_count[key] / vc[key])
|
77 |
+
return prediction_video
|