asdasdasdasd commited on
Commit
29572cc
·
1 Parent(s): 858279b

Upload extract_landmarks.py

Browse files
Files changed (1) hide show
  1. extract_landmarks.py +77 -0
extract_landmarks.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ from landmark_utils import detect_frames_track
4
+
5
+ def detect_track(video):
6
+ vidcap = cv2.VideoCapture(video)
7
+ fps = vidcap.get(cv2.CAP_PROP_FPS)
8
+ frames = []
9
+ while True:
10
+ success, image = vidcap.read()
11
+ if success:
12
+ frames.append(image)
13
+ else:
14
+ break
15
+ raw_data = detect_frames_track(frames, fps, video)
16
+
17
+ vidcap.release()
18
+ return np.array(raw_data)
19
+
20
+ def extract_landmark(video):
21
+ raw_data = detect_track(video)
22
+ print("video=",video)
23
+ if len(raw_data) == 0:
24
+ pass
25
+ else:
26
+ np.savetxt(video + ".txt", raw_data, fmt='%1.5f')
27
+ path = video + ".txt"
28
+ print(path)
29
+ return path
30
+
31
+ def get_data_for_test(path, fake, block): # fake:manipulated=1 original=0
32
+ file = path
33
+ x = []
34
+ x_diff = []
35
+ y = []
36
+
37
+ video_y = []
38
+ count_y = {}
39
+ sample_to_video = []
40
+
41
+ # for file in tqdm(files):
42
+ vectors = np.loadtxt(file)
43
+ video_y.append(fake)
44
+
45
+ for i in range(0, vectors.shape[0] - block, block):
46
+ vec = vectors[i:i + block, :]
47
+ x.append(vec)
48
+ vec_next = vectors[i + 1:i + block, :]
49
+ vec_next = np.pad(vec_next, ((0, 1), (0, 0)), 'constant', constant_values=(0, 0))
50
+ vec_diff = (vec_next - vec)[:block - 1, :]
51
+ x_diff.append(vec_diff)
52
+
53
+ y.append(fake)
54
+
55
+ # Dict for counting number of samples in video
56
+ if file not in count_y:
57
+ count_y[file] = 1
58
+ else:
59
+ count_y[file] += 1
60
+
61
+ sample_to_video.append(file)
62
+ return np.array(x), np.array(x_diff), np.array(y), np.array(video_y), np.array(sample_to_video), count_y
63
+
64
+ def merge_video_prediction(mix_prediction, s2v, vc):
65
+ prediction_video = []
66
+ pre_count = {}
67
+ for p, v_label in zip(mix_prediction, s2v):
68
+ p_bi = 0
69
+ if p >= 0.5:
70
+ p_bi = 1
71
+ if v_label in pre_count:
72
+ pre_count[v_label] += p_bi
73
+ else:
74
+ pre_count[v_label] = p_bi
75
+ for key in pre_count.keys():
76
+ prediction_video.append(pre_count[key] / vc[key])
77
+ return prediction_video