Spaces:
Running
Running
initial-commit
Browse files- SimSearch.py +46 -0
- app.py +153 -0
- requirement.txt +8 -0
SimSearch.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import faiss
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
class FaissNeighbors:
|
5 |
+
def __init__(self):
|
6 |
+
self.index = None
|
7 |
+
self.y = None
|
8 |
+
|
9 |
+
def fit(self, X, y):
|
10 |
+
self.index = faiss.IndexFlatL2(X.shape[1])
|
11 |
+
self.index.add(X.astype(np.float32))
|
12 |
+
self.y = y
|
13 |
+
|
14 |
+
def get_distances_and_indices(self, X, top_K=1000):
|
15 |
+
distances, indices = self.index.search(X.astype(np.float32), k=top_K)
|
16 |
+
return np.copy(distances), np.copy(indices), np.copy(self.y[indices])
|
17 |
+
|
18 |
+
def get_nearest_labels(self, X, top_K=1000):
|
19 |
+
distances, indices = self.index.search(X.astype(np.float32), k=top_K)
|
20 |
+
return np.copy(self.y[indices])
|
21 |
+
|
22 |
+
|
23 |
+
class FaissCosineNeighbors:
|
24 |
+
def __init__(self):
|
25 |
+
self.cindex = None
|
26 |
+
self.y = None
|
27 |
+
|
28 |
+
def fit(self, X, y):
|
29 |
+
self.cindex = faiss.index_factory(X.shape[1], "Flat", faiss.METRIC_INNER_PRODUCT)
|
30 |
+
X = np.copy(X)
|
31 |
+
X = X.astype(np.float32)
|
32 |
+
faiss.normalize_L2(X)
|
33 |
+
self.cindex.add(X)
|
34 |
+
self.y = y
|
35 |
+
|
36 |
+
def get_distances_and_indices(self, Q, topK):
|
37 |
+
Q = np.copy(Q)
|
38 |
+
faiss.normalize_L2(Q)
|
39 |
+
distances, indices = self.cindex.search(Q.astype(np.float32), k=topK)
|
40 |
+
return np.copy(distances), np.copy(indices), np.copy(self.y[indices])
|
41 |
+
|
42 |
+
def get_nearest_labels(self, Q, topK=1000):
|
43 |
+
Q = np.copy(Q)
|
44 |
+
faiss.normalize_L2(Q)
|
45 |
+
distances, indices = self.cindex.search(Q.astype(np.float32), k=topK)
|
46 |
+
return np.copy(self.y[indices])
|
app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from tqdm import tqdm
|
4 |
+
import clip
|
5 |
+
from glob import glob
|
6 |
+
import gradio as gr
|
7 |
+
import os
|
8 |
+
import torchvision
|
9 |
+
import pickle
|
10 |
+
from collections import Counter
|
11 |
+
|
12 |
+
from SimSearch import FaissCosineNeighbors
|
13 |
+
|
14 |
+
# HELPERS
|
15 |
+
to_np = lambda x: x.data.to('cpu').numpy()
|
16 |
+
|
17 |
+
# DOWNLOAD THE DATASET and Files
|
18 |
+
|
19 |
+
torchvision.datasets.utils.download_file_from_google_drive('1kB1vNdVaNS1OGZ3K8BspBUKkPACCsnrG', '.', 'GTAV-Videos.zip')
|
20 |
+
torchvision.datasets.utils.download_file_from_google_drive('1pgvIBTs_6h23wIU28EdqO5y2T1wUfOak', '.', 'GTAV-embedding-vit32.zip')
|
21 |
+
|
22 |
+
# EXTRACT
|
23 |
+
torchvision.datasets.utils.extract_archive(from_path='GTAV-embedding-vit32.zip', to_path='Embeddings/VIT32/', remove_finished=False)
|
24 |
+
torchvision.datasets.utils.extract_archive(from_path='GTAV-Videos.zip', to_path='Videos/', remove_finished=False)
|
25 |
+
|
26 |
+
# Initialize CLIP model
|
27 |
+
clip.available_models()
|
28 |
+
|
29 |
+
# # Searcher
|
30 |
+
|
31 |
+
class GamePhysicsSearcher:
|
32 |
+
def __init__(self, CLIP_MODEL, GAME_NAME, EMBEDDING_PATH='./Embeddings/VIT32/'):
|
33 |
+
self.CLIP_MODEL = CLIP_MODEL
|
34 |
+
self.GAME_NAME = GAME_NAME
|
35 |
+
self.simsearcher = FaissCosineNeighbors()
|
36 |
+
|
37 |
+
self.all_embeddings = glob(f'{EMBEDDING_PATH}{self.GAME_NAME}/*.npy')
|
38 |
+
|
39 |
+
self.filenames = [os.path.basename(x) for x in self.all_embeddings]
|
40 |
+
self.file_to_class_id = {x:i for i, x in enumerate(self.filenames)}
|
41 |
+
self.class_id_to_file = {i:x for i, x in enumerate(self.filenames)}
|
42 |
+
self.build_index()
|
43 |
+
|
44 |
+
def read_features(self, file_path):
|
45 |
+
with open(file_path, 'rb') as f:
|
46 |
+
video_features = pickle.load(f)
|
47 |
+
return video_features
|
48 |
+
|
49 |
+
def read_all_features(self):
|
50 |
+
features = {}
|
51 |
+
filenames_extended = []
|
52 |
+
|
53 |
+
X_train = []
|
54 |
+
y_train = []
|
55 |
+
|
56 |
+
for i, vfile in enumerate(tqdm(self.all_embeddings)):
|
57 |
+
vfeatures = to_np(self.read_features(vfile))
|
58 |
+
features[vfile.split('/')[-1]] = vfeatures
|
59 |
+
X_train.extend(vfeatures)
|
60 |
+
y_train.extend([i]*vfeatures.shape[0])
|
61 |
+
filenames_extended.extend(vfeatures.shape[0]*[vfile.split('/')[-1]])
|
62 |
+
|
63 |
+
X_train = np.asarray(X_train)
|
64 |
+
y_train = np.asarray(y_train)
|
65 |
+
|
66 |
+
return X_train, y_train
|
67 |
+
|
68 |
+
def build_index(self):
|
69 |
+
X_train, y_train = self.read_all_features()
|
70 |
+
self.simsearcher.fit(X_train, y_train)
|
71 |
+
|
72 |
+
def text_to_vector(self, query):
|
73 |
+
text_tokens = clip.tokenize(query).cuda()
|
74 |
+
with torch.no_grad():
|
75 |
+
text_features = self.CLIP_MODEL.encode_text(text_tokens).float()
|
76 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
77 |
+
return to_np(text_features)
|
78 |
+
|
79 |
+
# Source: https://stackoverflow.com/a/480227
|
80 |
+
def f7(self, seq):
|
81 |
+
seen = set()
|
82 |
+
seen_add = seen.add # This is for performance improvement, don't remove
|
83 |
+
return [x for x in seq if not (x in seen or seen_add(x))]
|
84 |
+
|
85 |
+
def search_top_k(self, q, k=5, pool_size=1000, search_mod='Majority'):
|
86 |
+
q = self.text_to_vector(q)
|
87 |
+
nearest_data_points = self.simsearcher.get_nearest_labels(q, pool_size)
|
88 |
+
|
89 |
+
if search_mod == 'Majority':
|
90 |
+
topKs = [x[0] for x in Counter(nearest_data_points[0]).most_common(k)]
|
91 |
+
elif search_mod == 'Top-K':
|
92 |
+
topKs = list(self.f7(nearest_data_points[0]))[:k]
|
93 |
+
|
94 |
+
video_filename = [f'./Videos/{self.GAME_NAME}/' + self.class_id_to_file[x].replace('npy', 'mp4') for x in topKs]
|
95 |
+
|
96 |
+
return video_filename
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
################ SEARCH CORE ################
|
101 |
+
# CRAETE CLIP MODEL
|
102 |
+
vit_model, vit_preprocess = clip.load("ViT-B/32")
|
103 |
+
vit_model.cuda().eval()
|
104 |
+
|
105 |
+
saved_searchers = {}
|
106 |
+
def gradio_search(query, game_name, selected_model, aggregator, pool_size, k=6):
|
107 |
+
# print(query, game_name, selected_model, aggregator, pool_size)
|
108 |
+
if f'{game_name}_{selected_model}' in saved_searchers.keys():
|
109 |
+
searcher = saved_searchers[f'{game_name}_{selected_model}']
|
110 |
+
else:
|
111 |
+
if selected_model == 'ViT-B/32':
|
112 |
+
model = vit_model
|
113 |
+
searcher = GamePhysicsSearcher(CLIP_MODEL=model, GAME_NAME=game_name)
|
114 |
+
else:
|
115 |
+
raise
|
116 |
+
|
117 |
+
saved_searchers[f'{game_name}_{selected_model}'] = searcher
|
118 |
+
|
119 |
+
results = []
|
120 |
+
relevant_videos = searcher.search_top_k(query, k=k, pool_size=pool_size, search_mod=aggregator)
|
121 |
+
params = ', '.join(map(str, [query, game_name, selected_model, aggregator, pool_size]))
|
122 |
+
results.append(params)
|
123 |
+
results.extend(relevant_videos)
|
124 |
+
print(results)
|
125 |
+
return results
|
126 |
+
|
127 |
+
list_of_games = ['Grand Theft Auto V']
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
# GRADIO APP
|
134 |
+
iface = gr.Interface(fn=gradio_search,
|
135 |
+
inputs =[ gr.inputs.Textbox(lines=1, placeholder='Search Query', default="A man in the air", label=None),
|
136 |
+
gr.inputs.Radio(list_of_games, label="Game To Search"),
|
137 |
+
gr.inputs.Radio(['ViT-B/32'], label="MODEL"),
|
138 |
+
gr.inputs.Radio(['Majority', 'Top-K'], label="Aggregator"),
|
139 |
+
gr.inputs.Slider(300, 2000, label="Pool Size"),
|
140 |
+
],
|
141 |
+
outputs=[
|
142 |
+
gr.outputs.Textbox(type="auto", label='Search Params'),
|
143 |
+
gr.outputs.Video(type='mp4', label='Result 1'),
|
144 |
+
gr.outputs.Video(type='mp4', label='Result 2'),
|
145 |
+
gr.outputs.Video(type='mp4', label='Result 3'),
|
146 |
+
gr.outputs.Video(type='mp4', label='Result 4'),
|
147 |
+
gr.outputs.Video(type='mp4', label='Result 5')],
|
148 |
+
server_port=7878,
|
149 |
+
server_name="0.0.0.0",
|
150 |
+
# examples=[],
|
151 |
+
title='CLIP Meets Game Physics Demo'
|
152 |
+
)
|
153 |
+
iface.launch()
|
requirement.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
numpy
|
3 |
+
tqdm
|
4 |
+
Pillow
|
5 |
+
scikit-image
|
6 |
+
gdown
|
7 |
+
torchvision
|
8 |
+
git+https://github.com/openai/CLIP.git
|