File size: 7,424 Bytes
90fd8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

from diff_gaussian_rasterization import (
    GaussianRasterizationSettings,
    GaussianRasterizer,
)

from core.options import Options

import kiui

class GaussianRenderer:
    def __init__(self, opt: Options):
        
        self.opt = opt
        self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda")
        
        # intrinsics
        self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
        self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
        self.proj_matrix[0, 0] = 1 / self.tan_half_fov
        self.proj_matrix[1, 1] = 1 / self.tan_half_fov
        self.proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
        self.proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
        self.proj_matrix[2, 3] = 1
        
    def render(self, gaussians, cam_view, cam_view_proj, cam_pos, bg_color=None, scale_modifier=1):
        # gaussians: [B, N, 14]
        # cam_view, cam_view_proj: [B, V, 4, 4]
        # cam_pos: [B, V, 3]

        device = gaussians.device
        B, V = cam_view.shape[:2]

        # loop of loop...
        images = []
        alphas = []
        for b in range(B):

            # pos, opacity, scale, rotation, shs
            means3D = gaussians[b, :, 0:3].contiguous().float()
            opacity = gaussians[b, :, 3:4].contiguous().float()
            scales = gaussians[b, :, 4:7].contiguous().float()
            rotations = gaussians[b, :, 7:11].contiguous().float()
            rgbs = gaussians[b, :, 11:].contiguous().float() # [N, 3]

            for v in range(V):
                
                # render novel views
                view_matrix = cam_view[b, v].float()
                view_proj_matrix = cam_view_proj[b, v].float()
                campos = cam_pos[b, v].float()

                raster_settings = GaussianRasterizationSettings(
                    image_height=self.opt.output_size,
                    image_width=self.opt.output_size,
                    tanfovx=self.tan_half_fov,
                    tanfovy=self.tan_half_fov,
                    bg=self.bg_color if bg_color is None else bg_color,
                    scale_modifier=scale_modifier,
                    viewmatrix=view_matrix,
                    projmatrix=view_proj_matrix,
                    sh_degree=0,
                    campos=campos,
                    prefiltered=False,
                    debug=False,
                )

                rasterizer = GaussianRasterizer(raster_settings=raster_settings)

                # Rasterize visible Gaussians to image, obtain their radii (on screen).
                rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
                    means3D=means3D,
                    means2D=torch.zeros_like(means3D, dtype=torch.float32, device=device),
                    shs=None,
                    colors_precomp=rgbs,
                    opacities=opacity,
                    scales=scales,
                    rotations=rotations,
                    cov3D_precomp=None,
                )

                rendered_image = rendered_image.clamp(0, 1)

                images.append(rendered_image)
                alphas.append(rendered_alpha)

        images = torch.stack(images, dim=0).view(B, V, 3, self.opt.output_size, self.opt.output_size)
        alphas = torch.stack(alphas, dim=0).view(B, V, 1, self.opt.output_size, self.opt.output_size)

        return {
            "image": images, # [B, V, 3, H, W]
            "alpha": alphas, # [B, V, 1, H, W]
        }


    def save_ply(self, gaussians, path, compatible=True):
        # gaussians: [B, N, 14]
        # compatible: save pre-activated gaussians as in the original paper

        assert gaussians.shape[0] == 1, 'only support batch size 1'

        from plyfile import PlyData, PlyElement
     
        means3D = gaussians[0, :, 0:3].contiguous().float()
        opacity = gaussians[0, :, 3:4].contiguous().float()
        scales = gaussians[0, :, 4:7].contiguous().float()
        rotations = gaussians[0, :, 7:11].contiguous().float()
        shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float() # [N, 1, 3]

        # prune by opacity
        mask = opacity.squeeze(-1) >= 0.005
        means3D = means3D[mask]
        opacity = opacity[mask]
        scales = scales[mask]
        rotations = rotations[mask]
        shs = shs[mask]

        # invert activation to make it compatible with the original ply format
        if compatible:
            opacity = kiui.op.inverse_sigmoid(opacity)
            scales = torch.log(scales + 1e-8)
            shs = (shs - 0.5) / 0.28209479177387814

        xyzs = means3D.detach().cpu().numpy()
        f_dc = shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
        opacities = opacity.detach().cpu().numpy()
        scales = scales.detach().cpu().numpy()
        rotations = rotations.detach().cpu().numpy()

        l = ['x', 'y', 'z']
        # All channels except the 3 DC
        for i in range(f_dc.shape[1]):
            l.append('f_dc_{}'.format(i))
        l.append('opacity')
        for i in range(scales.shape[1]):
            l.append('scale_{}'.format(i))
        for i in range(rotations.shape[1]):
            l.append('rot_{}'.format(i))

        dtype_full = [(attribute, 'f4') for attribute in l]

        elements = np.empty(xyzs.shape[0], dtype=dtype_full)
        attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1)
        elements[:] = list(map(tuple, attributes))
        el = PlyElement.describe(elements, 'vertex')

        PlyData([el]).write(path)
    
    def load_ply(self, path, compatible=True):

        from plyfile import PlyData, PlyElement

        plydata = PlyData.read(path)

        xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
                        np.asarray(plydata.elements[0]["y"]),
                        np.asarray(plydata.elements[0]["z"])),  axis=1)
        print("Number of points at loading : ", xyz.shape[0])

        opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]

        shs = np.zeros((xyz.shape[0], 3))
        shs[:, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
        shs[:, 1] = np.asarray(plydata.elements[0]["f_dc_1"])
        shs[:, 2] = np.asarray(plydata.elements[0]["f_dc_2"])

        scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
        scales = np.zeros((xyz.shape[0], len(scale_names)))
        for idx, attr_name in enumerate(scale_names):
            scales[:, idx] = np.asarray(plydata.elements[0][attr_name])

        rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")]
        rots = np.zeros((xyz.shape[0], len(rot_names)))
        for idx, attr_name in enumerate(rot_names):
            rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
          
        gaussians = np.concatenate([xyz, opacities, scales, rots, shs], axis=1)
        gaussians = torch.from_numpy(gaussians).float() # cpu

        if compatible:
            gaussians[..., 3:4] = torch.sigmoid(gaussians[..., 3:4])
            gaussians[..., 4:7] = torch.exp(gaussians[..., 4:7])
            gaussians[..., 11:] = 0.28209479177387814 * gaussians[..., 11:] + 0.5

        return gaussians