Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,579 Bytes
c8d8740 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact george.drettakis@inria.fr
*/
#include "rasterizer_impl.h"
#include <iostream>
#include <fstream>
#include <algorithm>
#include <numeric>
#include <cuda.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <cub/cub.cuh>
#include <cub/device/device_radix_sort.cuh>
#define GLM_FORCE_CUDA
#include <glm/glm.hpp>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
#include "auxiliary.h"
#include "forward.h"
#include "backward.h"
// Helper function to find the next-highest bit of the MSB
// on the CPU.
uint32_t getHigherMsb(uint32_t n)
{
uint32_t msb = sizeof(n) * 4;
uint32_t step = msb;
while (step > 1)
{
step /= 2;
if (n >> msb)
msb += step;
else
msb -= step;
}
if (n >> msb)
msb++;
return msb;
}
// Wrapper method to call auxiliary coarse frustum containment test.
// Mark all Gaussians that pass it.
__global__ void checkFrustum(int P,
const float* orig_points,
const float* viewmatrix,
const float* projmatrix,
bool* present)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
float3 p_view;
present[idx] = in_frustum(idx, orig_points, viewmatrix, projmatrix, false, p_view);
}
// Generates one key/value pair for all Gaussian / tile overlaps.
// Run once per Gaussian (1:N mapping).
__global__ void duplicateWithKeys(
int P,
const float2* points_xy,
const float* depths,
const uint32_t* offsets,
uint64_t* gaussian_keys_unsorted,
uint32_t* gaussian_values_unsorted,
int* radii,
dim3 grid)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
// Generate no key/value pair for invisible Gaussians
if (radii[idx] > 0)
{
// Find this Gaussian's offset in buffer for writing keys/values.
uint32_t off = (idx == 0) ? 0 : offsets[idx - 1];
uint2 rect_min, rect_max;
getRect(points_xy[idx], radii[idx], rect_min, rect_max, grid);
// For each tile that the bounding rect overlaps, emit a
// key/value pair. The key is | tile ID | depth |,
// and the value is the ID of the Gaussian. Sorting the values
// with this key yields Gaussian IDs in a list, such that they
// are first sorted by tile and then by depth.
for (int y = rect_min.y; y < rect_max.y; y++)
{
for (int x = rect_min.x; x < rect_max.x; x++)
{
uint64_t key = y * grid.x + x;
key <<= 32;
key |= *((uint32_t*)&depths[idx]);
gaussian_keys_unsorted[off] = key;
gaussian_values_unsorted[off] = idx;
off++;
}
}
}
}
// Check keys to see if it is at the start/end of one tile's range in
// the full sorted list. If yes, write start/end of this tile.
// Run once per instanced (duplicated) Gaussian ID.
__global__ void identifyTileRanges(int L, uint64_t* point_list_keys, uint2* ranges)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= L)
return;
// Read tile ID from key. Update start/end of tile range if at limit.
uint64_t key = point_list_keys[idx];
uint32_t currtile = key >> 32;
if (idx == 0)
ranges[currtile].x = 0;
else
{
uint32_t prevtile = point_list_keys[idx - 1] >> 32;
if (currtile != prevtile)
{
ranges[prevtile].y = idx;
ranges[currtile].x = idx;
}
}
if (idx == L - 1)
ranges[currtile].y = L;
}
// Mark Gaussians as visible/invisible, based on view frustum testing
void CudaRasterizer::Rasterizer::markVisible(
int P,
float* means3D,
float* viewmatrix,
float* projmatrix,
bool* present)
{
checkFrustum << <(P + 255) / 256, 256 >> > (
P,
means3D,
viewmatrix, projmatrix,
present);
}
CudaRasterizer::GeometryState CudaRasterizer::GeometryState::fromChunk(char*& chunk, size_t P)
{
GeometryState geom;
obtain(chunk, geom.depths, P, 128);
obtain(chunk, geom.clamped, P * 3, 128);
obtain(chunk, geom.internal_radii, P, 128);
obtain(chunk, geom.means2D, P, 128);
obtain(chunk, geom.cov3D, P * 6, 128);
obtain(chunk, geom.conic_opacity, P, 128);
obtain(chunk, geom.rgb, P * 3, 128);
obtain(chunk, geom.tiles_touched, P, 128);
cub::DeviceScan::InclusiveSum(nullptr, geom.scan_size, geom.tiles_touched, geom.tiles_touched, P);
obtain(chunk, geom.scanning_space, geom.scan_size, 128);
obtain(chunk, geom.point_offsets, P, 128);
return geom;
}
CudaRasterizer::ImageState CudaRasterizer::ImageState::fromChunk(char*& chunk, size_t N)
{
ImageState img;
obtain(chunk, img.n_contrib, N, 128);
obtain(chunk, img.ranges, N, 128);
return img;
}
CudaRasterizer::BinningState CudaRasterizer::BinningState::fromChunk(char*& chunk, size_t P)
{
BinningState binning;
obtain(chunk, binning.point_list, P, 128);
obtain(chunk, binning.point_list_unsorted, P, 128);
obtain(chunk, binning.point_list_keys, P, 128);
obtain(chunk, binning.point_list_keys_unsorted, P, 128);
cub::DeviceRadixSort::SortPairs(
nullptr, binning.sorting_size,
binning.point_list_keys_unsorted, binning.point_list_keys,
binning.point_list_unsorted, binning.point_list, P);
obtain(chunk, binning.list_sorting_space, binning.sorting_size, 128);
return binning;
}
// Forward rendering procedure for differentiable rasterization
// of Gaussians.
int CudaRasterizer::Rasterizer::forward(
std::function<char* (size_t)> geometryBuffer,
std::function<char* (size_t)> binningBuffer,
std::function<char* (size_t)> imageBuffer,
const int P, int D, int M,
const float* background,
const int width, int height,
const float* means3D,
const float* shs,
const float* colors_precomp,
const float* opacities,
const float* scales,
const float scale_modifier,
const float* rotations,
const float* cov3D_precomp,
const float* viewmatrix,
const float* projmatrix,
const float* cam_pos,
const float tan_fovx, float tan_fovy,
const bool prefiltered,
float* out_color,
float* out_depth,
float* out_alpha,
int* radii,
bool debug)
{
const float focal_y = height / (2.0f * tan_fovy);
const float focal_x = width / (2.0f * tan_fovx);
size_t chunk_size = required<GeometryState>(P);
char* chunkptr = geometryBuffer(chunk_size);
GeometryState geomState = GeometryState::fromChunk(chunkptr, P);
if (radii == nullptr)
{
radii = geomState.internal_radii;
}
dim3 tile_grid((width + BLOCK_X - 1) / BLOCK_X, (height + BLOCK_Y - 1) / BLOCK_Y, 1);
dim3 block(BLOCK_X, BLOCK_Y, 1);
// Dynamically resize image-based auxiliary buffers during training
size_t img_chunk_size = required<ImageState>(width * height);
char* img_chunkptr = imageBuffer(img_chunk_size);
ImageState imgState = ImageState::fromChunk(img_chunkptr, width * height);
if (NUM_CHANNELS != 3 && colors_precomp == nullptr)
{
throw std::runtime_error("For non-RGB, provide precomputed Gaussian colors!");
}
// Run preprocessing per-Gaussian (transformation, bounding, conversion of SHs to RGB)
CHECK_CUDA(FORWARD::preprocess(
P, D, M,
means3D,
(glm::vec3*)scales,
scale_modifier,
(glm::vec4*)rotations,
opacities,
shs,
geomState.clamped,
cov3D_precomp,
colors_precomp,
viewmatrix, projmatrix,
(glm::vec3*)cam_pos,
width, height,
focal_x, focal_y,
tan_fovx, tan_fovy,
radii,
geomState.means2D,
geomState.depths,
geomState.cov3D,
geomState.rgb,
geomState.conic_opacity,
tile_grid,
geomState.tiles_touched,
prefiltered
), debug)
// Compute prefix sum over full list of touched tile counts by Gaussians
// E.g., [2, 3, 0, 2, 1] -> [2, 5, 5, 7, 8]
CHECK_CUDA(cub::DeviceScan::InclusiveSum(geomState.scanning_space, geomState.scan_size, geomState.tiles_touched, geomState.point_offsets, P), debug)
// Retrieve total number of Gaussian instances to launch and resize aux buffers
int num_rendered;
CHECK_CUDA(cudaMemcpy(&num_rendered, geomState.point_offsets + P - 1, sizeof(int), cudaMemcpyDeviceToHost), debug);
size_t binning_chunk_size = required<BinningState>(num_rendered);
char* binning_chunkptr = binningBuffer(binning_chunk_size);
BinningState binningState = BinningState::fromChunk(binning_chunkptr, num_rendered);
// For each instance to be rendered, produce adequate [ tile | depth ] key
// and corresponding dublicated Gaussian indices to be sorted
duplicateWithKeys << <(P + 255) / 256, 256 >> > (
P,
geomState.means2D,
geomState.depths,
geomState.point_offsets,
binningState.point_list_keys_unsorted,
binningState.point_list_unsorted,
radii,
tile_grid)
CHECK_CUDA(, debug)
int bit = getHigherMsb(tile_grid.x * tile_grid.y);
// Sort complete list of (duplicated) Gaussian indices by keys
CHECK_CUDA(cub::DeviceRadixSort::SortPairs(
binningState.list_sorting_space,
binningState.sorting_size,
binningState.point_list_keys_unsorted, binningState.point_list_keys,
binningState.point_list_unsorted, binningState.point_list,
num_rendered, 0, 32 + bit), debug)
CHECK_CUDA(cudaMemset(imgState.ranges, 0, tile_grid.x * tile_grid.y * sizeof(uint2)), debug);
// Identify start and end of per-tile workloads in sorted list
if (num_rendered > 0)
identifyTileRanges << <(num_rendered + 255) / 256, 256 >> > (
num_rendered,
binningState.point_list_keys,
imgState.ranges);
CHECK_CUDA(, debug);
// Let each tile blend its range of Gaussians independently in parallel
const float* feature_ptr = colors_precomp != nullptr ? colors_precomp : geomState.rgb;
CHECK_CUDA(FORWARD::render(
tile_grid, block,
imgState.ranges,
binningState.point_list,
width, height,
geomState.means2D,
feature_ptr,
geomState.depths,
geomState.conic_opacity,
out_alpha,
imgState.n_contrib,
background,
out_color,
out_depth), debug);
return num_rendered;
}
// Produce necessary gradients for optimization, corresponding
// to forward render pass
void CudaRasterizer::Rasterizer::backward(
const int P, int D, int M, int R,
const float* background,
const int width, int height,
const float* means3D,
const float* shs,
const float* colors_precomp,
const float* alphas,
const float* scales,
const float scale_modifier,
const float* rotations,
const float* cov3D_precomp,
const float* viewmatrix,
const float* projmatrix,
const float* campos,
const float tan_fovx, float tan_fovy,
const int* radii,
char* geom_buffer,
char* binning_buffer,
char* img_buffer,
const float* dL_dpix,
const float* dL_dpix_depth,
const float* dL_dalphas,
float* dL_dmean2D,
float* dL_dconic,
float* dL_dopacity,
float* dL_dcolor,
float* dL_ddepth,
float* dL_dmean3D,
float* dL_dcov3D,
float* dL_dsh,
float* dL_dscale,
float* dL_drot,
bool debug)
{
GeometryState geomState = GeometryState::fromChunk(geom_buffer, P);
BinningState binningState = BinningState::fromChunk(binning_buffer, R);
ImageState imgState = ImageState::fromChunk(img_buffer, width * height);
if (radii == nullptr)
{
radii = geomState.internal_radii;
}
const float focal_y = height / (2.0f * tan_fovy);
const float focal_x = width / (2.0f * tan_fovx);
const dim3 tile_grid((width + BLOCK_X - 1) / BLOCK_X, (height + BLOCK_Y - 1) / BLOCK_Y, 1);
const dim3 block(BLOCK_X, BLOCK_Y, 1);
// Compute loss gradients w.r.t. 2D mean position, conic matrix,
// opacity and RGB of Gaussians from per-pixel loss gradients.
// If we were given precomputed colors and not SHs, use them.
const float* color_ptr = (colors_precomp != nullptr) ? colors_precomp : geomState.rgb;
const float* depth_ptr = geomState.depths;
CHECK_CUDA(BACKWARD::render(
tile_grid,
block,
imgState.ranges,
binningState.point_list,
width, height,
background,
geomState.means2D,
geomState.conic_opacity,
color_ptr,
depth_ptr,
alphas,
imgState.n_contrib,
dL_dpix,
dL_dpix_depth,
dL_dalphas,
(float3*)dL_dmean2D,
(float4*)dL_dconic,
dL_dopacity,
dL_dcolor,
dL_ddepth), debug)
// Take care of the rest of preprocessing. Was the precomputed covariance
// given to us or a scales/rot pair? If precomputed, pass that. If not,
// use the one we computed ourselves.
const float* cov3D_ptr = (cov3D_precomp != nullptr) ? cov3D_precomp : geomState.cov3D;
CHECK_CUDA(BACKWARD::preprocess(P, D, M,
(float3*)means3D,
radii,
shs,
geomState.clamped,
(glm::vec3*)scales,
(glm::vec4*)rotations,
scale_modifier,
cov3D_ptr,
viewmatrix,
projmatrix,
focal_x, focal_y,
tan_fovx, tan_fovy,
(glm::vec3*)campos,
(float3*)dL_dmean2D,
dL_dconic,
(glm::vec3*)dL_dmean3D,
dL_dcolor,
dL_ddepth,
dL_dcov3D,
dL_dsh,
(glm::vec3*)dL_dscale,
(glm::vec4*)dL_drot), debug)
} |