Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,893 Bytes
c8d8740 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact george.drettakis@inria.fr
*/
#include "backward.h"
#include "auxiliary.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
// Backward pass for conversion of spherical harmonics to RGB for
// each Gaussian.
__device__ void computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, const bool* clamped, const glm::vec3* dL_dcolor, glm::vec3* dL_dmeans, glm::vec3* dL_dshs)
{
// Compute intermediate values, as it is done during forward
glm::vec3 pos = means[idx];
glm::vec3 dir_orig = pos - campos;
glm::vec3 dir = dir_orig / glm::length(dir_orig);
glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs;
// Use PyTorch rule for clamping: if clamping was applied,
// gradient becomes 0.
glm::vec3 dL_dRGB = dL_dcolor[idx];
dL_dRGB.x *= clamped[3 * idx + 0] ? 0 : 1;
dL_dRGB.y *= clamped[3 * idx + 1] ? 0 : 1;
dL_dRGB.z *= clamped[3 * idx + 2] ? 0 : 1;
glm::vec3 dRGBdx(0, 0, 0);
glm::vec3 dRGBdy(0, 0, 0);
glm::vec3 dRGBdz(0, 0, 0);
float x = dir.x;
float y = dir.y;
float z = dir.z;
// Target location for this Gaussian to write SH gradients to
glm::vec3* dL_dsh = dL_dshs + idx * max_coeffs;
// No tricks here, just high school-level calculus.
float dRGBdsh0 = SH_C0;
dL_dsh[0] = dRGBdsh0 * dL_dRGB;
if (deg > 0)
{
float dRGBdsh1 = -SH_C1 * y;
float dRGBdsh2 = SH_C1 * z;
float dRGBdsh3 = -SH_C1 * x;
dL_dsh[1] = dRGBdsh1 * dL_dRGB;
dL_dsh[2] = dRGBdsh2 * dL_dRGB;
dL_dsh[3] = dRGBdsh3 * dL_dRGB;
dRGBdx = -SH_C1 * sh[3];
dRGBdy = -SH_C1 * sh[1];
dRGBdz = SH_C1 * sh[2];
if (deg > 1)
{
float xx = x * x, yy = y * y, zz = z * z;
float xy = x * y, yz = y * z, xz = x * z;
float dRGBdsh4 = SH_C2[0] * xy;
float dRGBdsh5 = SH_C2[1] * yz;
float dRGBdsh6 = SH_C2[2] * (2.f * zz - xx - yy);
float dRGBdsh7 = SH_C2[3] * xz;
float dRGBdsh8 = SH_C2[4] * (xx - yy);
dL_dsh[4] = dRGBdsh4 * dL_dRGB;
dL_dsh[5] = dRGBdsh5 * dL_dRGB;
dL_dsh[6] = dRGBdsh6 * dL_dRGB;
dL_dsh[7] = dRGBdsh7 * dL_dRGB;
dL_dsh[8] = dRGBdsh8 * dL_dRGB;
dRGBdx += SH_C2[0] * y * sh[4] + SH_C2[2] * 2.f * -x * sh[6] + SH_C2[3] * z * sh[7] + SH_C2[4] * 2.f * x * sh[8];
dRGBdy += SH_C2[0] * x * sh[4] + SH_C2[1] * z * sh[5] + SH_C2[2] * 2.f * -y * sh[6] + SH_C2[4] * 2.f * -y * sh[8];
dRGBdz += SH_C2[1] * y * sh[5] + SH_C2[2] * 2.f * 2.f * z * sh[6] + SH_C2[3] * x * sh[7];
if (deg > 2)
{
float dRGBdsh9 = SH_C3[0] * y * (3.f * xx - yy);
float dRGBdsh10 = SH_C3[1] * xy * z;
float dRGBdsh11 = SH_C3[2] * y * (4.f * zz - xx - yy);
float dRGBdsh12 = SH_C3[3] * z * (2.f * zz - 3.f * xx - 3.f * yy);
float dRGBdsh13 = SH_C3[4] * x * (4.f * zz - xx - yy);
float dRGBdsh14 = SH_C3[5] * z * (xx - yy);
float dRGBdsh15 = SH_C3[6] * x * (xx - 3.f * yy);
dL_dsh[9] = dRGBdsh9 * dL_dRGB;
dL_dsh[10] = dRGBdsh10 * dL_dRGB;
dL_dsh[11] = dRGBdsh11 * dL_dRGB;
dL_dsh[12] = dRGBdsh12 * dL_dRGB;
dL_dsh[13] = dRGBdsh13 * dL_dRGB;
dL_dsh[14] = dRGBdsh14 * dL_dRGB;
dL_dsh[15] = dRGBdsh15 * dL_dRGB;
dRGBdx += (
SH_C3[0] * sh[9] * 3.f * 2.f * xy +
SH_C3[1] * sh[10] * yz +
SH_C3[2] * sh[11] * -2.f * xy +
SH_C3[3] * sh[12] * -3.f * 2.f * xz +
SH_C3[4] * sh[13] * (-3.f * xx + 4.f * zz - yy) +
SH_C3[5] * sh[14] * 2.f * xz +
SH_C3[6] * sh[15] * 3.f * (xx - yy));
dRGBdy += (
SH_C3[0] * sh[9] * 3.f * (xx - yy) +
SH_C3[1] * sh[10] * xz +
SH_C3[2] * sh[11] * (-3.f * yy + 4.f * zz - xx) +
SH_C3[3] * sh[12] * -3.f * 2.f * yz +
SH_C3[4] * sh[13] * -2.f * xy +
SH_C3[5] * sh[14] * -2.f * yz +
SH_C3[6] * sh[15] * -3.f * 2.f * xy);
dRGBdz += (
SH_C3[1] * sh[10] * xy +
SH_C3[2] * sh[11] * 4.f * 2.f * yz +
SH_C3[3] * sh[12] * 3.f * (2.f * zz - xx - yy) +
SH_C3[4] * sh[13] * 4.f * 2.f * xz +
SH_C3[5] * sh[14] * (xx - yy));
}
}
}
// The view direction is an input to the computation. View direction
// is influenced by the Gaussian's mean, so SHs gradients
// must propagate back into 3D position.
glm::vec3 dL_ddir(glm::dot(dRGBdx, dL_dRGB), glm::dot(dRGBdy, dL_dRGB), glm::dot(dRGBdz, dL_dRGB));
// Account for normalization of direction
float3 dL_dmean = dnormvdv(float3{ dir_orig.x, dir_orig.y, dir_orig.z }, float3{ dL_ddir.x, dL_ddir.y, dL_ddir.z });
// Gradients of loss w.r.t. Gaussian means, but only the portion
// that is caused because the mean affects the view-dependent color.
// Additional mean gradient is accumulated in below methods.
dL_dmeans[idx] += glm::vec3(dL_dmean.x, dL_dmean.y, dL_dmean.z);
}
// Backward version of INVERSE 2D covariance matrix computation
// (due to length launched as separate kernel before other
// backward steps contained in preprocess)
__global__ void computeCov2DCUDA(int P,
const float3* means,
const int* radii,
const float* cov3Ds,
const float h_x, float h_y,
const float tan_fovx, float tan_fovy,
const float* view_matrix,
const float* dL_dconics,
float3* dL_dmeans,
float* dL_dcov)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P || !(radii[idx] > 0))
return;
// Reading location of 3D covariance for this Gaussian
const float* cov3D = cov3Ds + 6 * idx;
// Fetch gradients, recompute 2D covariance and relevant
// intermediate forward results needed in the backward.
float3 mean = means[idx];
float3 dL_dconic = { dL_dconics[4 * idx], dL_dconics[4 * idx + 1], dL_dconics[4 * idx + 3] };
float3 t = transformPoint4x3(mean, view_matrix);
const float limx = 1.3f * tan_fovx;
const float limy = 1.3f * tan_fovy;
const float txtz = t.x / t.z;
const float tytz = t.y / t.z;
t.x = min(limx, max(-limx, txtz)) * t.z;
t.y = min(limy, max(-limy, tytz)) * t.z;
const float x_grad_mul = txtz < -limx || txtz > limx ? 0 : 1;
const float y_grad_mul = tytz < -limy || tytz > limy ? 0 : 1;
glm::mat3 J = glm::mat3(h_x / t.z, 0.0f, -(h_x * t.x) / (t.z * t.z),
0.0f, h_y / t.z, -(h_y * t.y) / (t.z * t.z),
0, 0, 0);
glm::mat3 W = glm::mat3(
view_matrix[0], view_matrix[4], view_matrix[8],
view_matrix[1], view_matrix[5], view_matrix[9],
view_matrix[2], view_matrix[6], view_matrix[10]);
glm::mat3 Vrk = glm::mat3(
cov3D[0], cov3D[1], cov3D[2],
cov3D[1], cov3D[3], cov3D[4],
cov3D[2], cov3D[4], cov3D[5]);
glm::mat3 T = W * J;
glm::mat3 cov2D = glm::transpose(T) * glm::transpose(Vrk) * T;
// Use helper variables for 2D covariance entries. More compact.
float a = cov2D[0][0] += 0.3f;
float b = cov2D[0][1];
float c = cov2D[1][1] += 0.3f;
float denom = a * c - b * b;
float dL_da = 0, dL_db = 0, dL_dc = 0;
float denom2inv = 1.0f / ((denom * denom) + 0.0000001f);
if (denom2inv != 0)
{
// Gradients of loss w.r.t. entries of 2D covariance matrix,
// given gradients of loss w.r.t. conic matrix (inverse covariance matrix).
// e.g., dL / da = dL / d_conic_a * d_conic_a / d_a
dL_da = denom2inv * (-c * c * dL_dconic.x + 2 * b * c * dL_dconic.y + (denom - a * c) * dL_dconic.z);
dL_dc = denom2inv * (-a * a * dL_dconic.z + 2 * a * b * dL_dconic.y + (denom - a * c) * dL_dconic.x);
dL_db = denom2inv * 2 * (b * c * dL_dconic.x - (denom + 2 * b * b) * dL_dconic.y + a * b * dL_dconic.z);
// Gradients of loss L w.r.t. each 3D covariance matrix (Vrk) entry,
// given gradients w.r.t. 2D covariance matrix (diagonal).
// cov2D = transpose(T) * transpose(Vrk) * T;
dL_dcov[6 * idx + 0] = (T[0][0] * T[0][0] * dL_da + T[0][0] * T[1][0] * dL_db + T[1][0] * T[1][0] * dL_dc);
dL_dcov[6 * idx + 3] = (T[0][1] * T[0][1] * dL_da + T[0][1] * T[1][1] * dL_db + T[1][1] * T[1][1] * dL_dc);
dL_dcov[6 * idx + 5] = (T[0][2] * T[0][2] * dL_da + T[0][2] * T[1][2] * dL_db + T[1][2] * T[1][2] * dL_dc);
// Gradients of loss L w.r.t. each 3D covariance matrix (Vrk) entry,
// given gradients w.r.t. 2D covariance matrix (off-diagonal).
// Off-diagonal elements appear twice --> double the gradient.
// cov2D = transpose(T) * transpose(Vrk) * T;
dL_dcov[6 * idx + 1] = 2 * T[0][0] * T[0][1] * dL_da + (T[0][0] * T[1][1] + T[0][1] * T[1][0]) * dL_db + 2 * T[1][0] * T[1][1] * dL_dc;
dL_dcov[6 * idx + 2] = 2 * T[0][0] * T[0][2] * dL_da + (T[0][0] * T[1][2] + T[0][2] * T[1][0]) * dL_db + 2 * T[1][0] * T[1][2] * dL_dc;
dL_dcov[6 * idx + 4] = 2 * T[0][2] * T[0][1] * dL_da + (T[0][1] * T[1][2] + T[0][2] * T[1][1]) * dL_db + 2 * T[1][1] * T[1][2] * dL_dc;
}
else
{
for (int i = 0; i < 6; i++)
dL_dcov[6 * idx + i] = 0;
}
// Gradients of loss w.r.t. upper 2x3 portion of intermediate matrix T
// cov2D = transpose(T) * transpose(Vrk) * T;
float dL_dT00 = 2 * (T[0][0] * Vrk[0][0] + T[0][1] * Vrk[0][1] + T[0][2] * Vrk[0][2]) * dL_da +
(T[1][0] * Vrk[0][0] + T[1][1] * Vrk[0][1] + T[1][2] * Vrk[0][2]) * dL_db;
float dL_dT01 = 2 * (T[0][0] * Vrk[1][0] + T[0][1] * Vrk[1][1] + T[0][2] * Vrk[1][2]) * dL_da +
(T[1][0] * Vrk[1][0] + T[1][1] * Vrk[1][1] + T[1][2] * Vrk[1][2]) * dL_db;
float dL_dT02 = 2 * (T[0][0] * Vrk[2][0] + T[0][1] * Vrk[2][1] + T[0][2] * Vrk[2][2]) * dL_da +
(T[1][0] * Vrk[2][0] + T[1][1] * Vrk[2][1] + T[1][2] * Vrk[2][2]) * dL_db;
float dL_dT10 = 2 * (T[1][0] * Vrk[0][0] + T[1][1] * Vrk[0][1] + T[1][2] * Vrk[0][2]) * dL_dc +
(T[0][0] * Vrk[0][0] + T[0][1] * Vrk[0][1] + T[0][2] * Vrk[0][2]) * dL_db;
float dL_dT11 = 2 * (T[1][0] * Vrk[1][0] + T[1][1] * Vrk[1][1] + T[1][2] * Vrk[1][2]) * dL_dc +
(T[0][0] * Vrk[1][0] + T[0][1] * Vrk[1][1] + T[0][2] * Vrk[1][2]) * dL_db;
float dL_dT12 = 2 * (T[1][0] * Vrk[2][0] + T[1][1] * Vrk[2][1] + T[1][2] * Vrk[2][2]) * dL_dc +
(T[0][0] * Vrk[2][0] + T[0][1] * Vrk[2][1] + T[0][2] * Vrk[2][2]) * dL_db;
// Gradients of loss w.r.t. upper 3x2 non-zero entries of Jacobian matrix
// T = W * J
float dL_dJ00 = W[0][0] * dL_dT00 + W[0][1] * dL_dT01 + W[0][2] * dL_dT02;
float dL_dJ02 = W[2][0] * dL_dT00 + W[2][1] * dL_dT01 + W[2][2] * dL_dT02;
float dL_dJ11 = W[1][0] * dL_dT10 + W[1][1] * dL_dT11 + W[1][2] * dL_dT12;
float dL_dJ12 = W[2][0] * dL_dT10 + W[2][1] * dL_dT11 + W[2][2] * dL_dT12;
float tz = 1.f / t.z;
float tz2 = tz * tz;
float tz3 = tz2 * tz;
// Gradients of loss w.r.t. transformed Gaussian mean t
float dL_dtx = x_grad_mul * -h_x * tz2 * dL_dJ02;
float dL_dty = y_grad_mul * -h_y * tz2 * dL_dJ12;
float dL_dtz = -h_x * tz2 * dL_dJ00 - h_y * tz2 * dL_dJ11 + (2 * h_x * t.x) * tz3 * dL_dJ02 + (2 * h_y * t.y) * tz3 * dL_dJ12;
// Account for transformation of mean to t
// t = transformPoint4x3(mean, view_matrix);
float3 dL_dmean = transformVec4x3Transpose({ dL_dtx, dL_dty, dL_dtz }, view_matrix);
// Gradients of loss w.r.t. Gaussian means, but only the portion
// that is caused because the mean affects the covariance matrix.
// Additional mean gradient is accumulated in BACKWARD::preprocess.
dL_dmeans[idx] = dL_dmean;
}
// Backward pass for the conversion of scale and rotation to a
// 3D covariance matrix for each Gaussian.
__device__ void computeCov3D(int idx, const glm::vec3 scale, float mod, const glm::vec4 rot, const float* dL_dcov3Ds, glm::vec3* dL_dscales, glm::vec4* dL_drots)
{
// Recompute (intermediate) results for the 3D covariance computation.
glm::vec4 q = rot;// / glm::length(rot);
float r = q.x;
float x = q.y;
float y = q.z;
float z = q.w;
glm::mat3 R = glm::mat3(
1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y),
2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x),
2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y)
);
glm::mat3 S = glm::mat3(1.0f);
glm::vec3 s = mod * scale;
S[0][0] = s.x;
S[1][1] = s.y;
S[2][2] = s.z;
glm::mat3 M = S * R;
const float* dL_dcov3D = dL_dcov3Ds + 6 * idx;
glm::vec3 dunc(dL_dcov3D[0], dL_dcov3D[3], dL_dcov3D[5]);
glm::vec3 ounc = 0.5f * glm::vec3(dL_dcov3D[1], dL_dcov3D[2], dL_dcov3D[4]);
// Convert per-element covariance loss gradients to matrix form
glm::mat3 dL_dSigma = glm::mat3(
dL_dcov3D[0], 0.5f * dL_dcov3D[1], 0.5f * dL_dcov3D[2],
0.5f * dL_dcov3D[1], dL_dcov3D[3], 0.5f * dL_dcov3D[4],
0.5f * dL_dcov3D[2], 0.5f * dL_dcov3D[4], dL_dcov3D[5]
);
// Compute loss gradient w.r.t. matrix M
// dSigma_dM = 2 * M
glm::mat3 dL_dM = 2.0f * M * dL_dSigma;
glm::mat3 Rt = glm::transpose(R);
glm::mat3 dL_dMt = glm::transpose(dL_dM);
// Gradients of loss w.r.t. scale
glm::vec3* dL_dscale = dL_dscales + idx;
dL_dscale->x = glm::dot(Rt[0], dL_dMt[0]);
dL_dscale->y = glm::dot(Rt[1], dL_dMt[1]);
dL_dscale->z = glm::dot(Rt[2], dL_dMt[2]);
dL_dMt[0] *= s.x;
dL_dMt[1] *= s.y;
dL_dMt[2] *= s.z;
// Gradients of loss w.r.t. normalized quaternion
glm::vec4 dL_dq;
dL_dq.x = 2 * z * (dL_dMt[0][1] - dL_dMt[1][0]) + 2 * y * (dL_dMt[2][0] - dL_dMt[0][2]) + 2 * x * (dL_dMt[1][2] - dL_dMt[2][1]);
dL_dq.y = 2 * y * (dL_dMt[1][0] + dL_dMt[0][1]) + 2 * z * (dL_dMt[2][0] + dL_dMt[0][2]) + 2 * r * (dL_dMt[1][2] - dL_dMt[2][1]) - 4 * x * (dL_dMt[2][2] + dL_dMt[1][1]);
dL_dq.z = 2 * x * (dL_dMt[1][0] + dL_dMt[0][1]) + 2 * r * (dL_dMt[2][0] - dL_dMt[0][2]) + 2 * z * (dL_dMt[1][2] + dL_dMt[2][1]) - 4 * y * (dL_dMt[2][2] + dL_dMt[0][0]);
dL_dq.w = 2 * r * (dL_dMt[0][1] - dL_dMt[1][0]) + 2 * x * (dL_dMt[2][0] + dL_dMt[0][2]) + 2 * y * (dL_dMt[1][2] + dL_dMt[2][1]) - 4 * z * (dL_dMt[1][1] + dL_dMt[0][0]);
// Gradients of loss w.r.t. unnormalized quaternion
float4* dL_drot = (float4*)(dL_drots + idx);
*dL_drot = float4{ dL_dq.x, dL_dq.y, dL_dq.z, dL_dq.w };//dnormvdv(float4{ rot.x, rot.y, rot.z, rot.w }, float4{ dL_dq.x, dL_dq.y, dL_dq.z, dL_dq.w });
}
// Backward pass of the preprocessing steps, except
// for the covariance computation and inversion
// (those are handled by a previous kernel call)
template<int C>
__global__ void preprocessCUDA(
int P, int D, int M,
const float3* means,
const int* radii,
const float* shs,
const bool* clamped,
const glm::vec3* scales,
const glm::vec4* rotations,
const float scale_modifier,
const float* view,
const float* proj,
const glm::vec3* campos,
const float3* dL_dmean2D,
glm::vec3* dL_dmeans,
float* dL_dcolor,
float* dL_ddepth,
float* dL_dcov3D,
float* dL_dsh,
glm::vec3* dL_dscale,
glm::vec4* dL_drot)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P || !(radii[idx] > 0))
return;
float3 m = means[idx];
// Taking care of gradients from the screenspace points
float4 m_hom = transformPoint4x4(m, proj);
float m_w = 1.0f / (m_hom.w + 0.0000001f);
// Compute loss gradient w.r.t. 3D means due to gradients of 2D means
// from rendering procedure
glm::vec3 dL_dmean;
float mul1 = (proj[0] * m.x + proj[4] * m.y + proj[8] * m.z + proj[12]) * m_w * m_w;
float mul2 = (proj[1] * m.x + proj[5] * m.y + proj[9] * m.z + proj[13]) * m_w * m_w;
dL_dmean.x = (proj[0] * m_w - proj[3] * mul1) * dL_dmean2D[idx].x + (proj[1] * m_w - proj[3] * mul2) * dL_dmean2D[idx].y;
dL_dmean.y = (proj[4] * m_w - proj[7] * mul1) * dL_dmean2D[idx].x + (proj[5] * m_w - proj[7] * mul2) * dL_dmean2D[idx].y;
dL_dmean.z = (proj[8] * m_w - proj[11] * mul1) * dL_dmean2D[idx].x + (proj[9] * m_w - proj[11] * mul2) * dL_dmean2D[idx].y;
// That's the second part of the mean gradient. Previous computation
// of cov2D and following SH conversion also affects it.
dL_dmeans[idx] += dL_dmean;
// the w must be equal to 1 for view^T * [x,y,z,1]
float3 m_view = transformPoint4x3(m, view);
// Compute loss gradient w.r.t. 3D means due to gradients of depth
// from rendering procedure
glm::vec3 dL_dmean2;
float mul3 = view[2] * m.x + view[6] * m.y + view[10] * m.z + view[14];
dL_dmean2.x = (view[2] - view[3] * mul3) * dL_ddepth[idx];
dL_dmean2.y = (view[6] - view[7] * mul3) * dL_ddepth[idx];
dL_dmean2.z = (view[10] - view[11] * mul3) * dL_ddepth[idx];
// That's the third part of the mean gradient.
dL_dmeans[idx] += dL_dmean2;
// Compute gradient updates due to computing colors from SHs
if (shs)
computeColorFromSH(idx, D, M, (glm::vec3*)means, *campos, shs, clamped, (glm::vec3*)dL_dcolor, (glm::vec3*)dL_dmeans, (glm::vec3*)dL_dsh);
// Compute gradient updates due to computing covariance from scale/rotation
if (scales)
computeCov3D(idx, scales[idx], scale_modifier, rotations[idx], dL_dcov3D, dL_dscale, dL_drot);
}
// Backward version of the rendering procedure.
template <uint32_t C>
__global__ void __launch_bounds__(BLOCK_X * BLOCK_Y)
renderCUDA(
const uint2* __restrict__ ranges,
const uint32_t* __restrict__ point_list,
int W, int H,
const float* __restrict__ bg_color,
const float2* __restrict__ points_xy_image,
const float4* __restrict__ conic_opacity,
const float* __restrict__ colors,
const float* __restrict__ depths,
const float* __restrict__ alphas,
const uint32_t* __restrict__ n_contrib,
const float* __restrict__ dL_dpixels,
const float* __restrict__ dL_dpixel_depths,
const float* __restrict__ dL_dalphas,
float3* __restrict__ dL_dmean2D,
float4* __restrict__ dL_dconic2D,
float* __restrict__ dL_dopacity,
float* __restrict__ dL_dcolors,
float* __restrict__ dL_ddepths
)
{
// We rasterize again. Compute necessary block info.
auto block = cg::this_thread_block();
const uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X;
const uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y };
const uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) };
const uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y };
const uint32_t pix_id = W * pix.y + pix.x;
const float2 pixf = { (float)pix.x, (float)pix.y };
const bool inside = pix.x < W&& pix.y < H;
const uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x];
const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE);
bool done = !inside;
int toDo = range.y - range.x;
__shared__ int collected_id[BLOCK_SIZE];
__shared__ float2 collected_xy[BLOCK_SIZE];
__shared__ float4 collected_conic_opacity[BLOCK_SIZE];
__shared__ float collected_colors[C * BLOCK_SIZE];
__shared__ float collected_depths[BLOCK_SIZE];
// In the forward, we stored the final value for T, the
// product of all (1 - alpha) factors.
const float T_final = inside ? (1 - alphas[pix_id]) : 0;
float T = T_final;
// We start from the back. The ID of the last contributing
// Gaussian is known from each pixel from the forward.
uint32_t contributor = toDo;
const int last_contributor = inside ? n_contrib[pix_id] : 0;
float accum_rec[C] = { 0 };
float dL_dpixel[C];
float accum_depth_rec = 0;
float dL_dpixel_depth;
float accum_alpha_rec = 0;
float dL_dalpha;
if (inside) {
for (int i = 0; i < C; i++)
dL_dpixel[i] = dL_dpixels[i * H * W + pix_id];
dL_dpixel_depth = dL_dpixel_depths[pix_id];
dL_dalpha = dL_dalphas[pix_id];
}
float last_alpha = 0;
float last_color[C] = { 0 };
float last_depth = 0;
// Gradient of pixel coordinate w.r.t. normalized
// screen-space viewport corrdinates (-1 to 1)
const float ddelx_dx = 0.5 * W;
const float ddely_dy = 0.5 * H;
// Traverse all Gaussians
for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE)
{
// Load auxiliary data into shared memory, start in the BACK
// and load them in revers order.
block.sync();
const int progress = i * BLOCK_SIZE + block.thread_rank();
if (range.x + progress < range.y)
{
const int coll_id = point_list[range.y - progress - 1];
collected_id[block.thread_rank()] = coll_id;
collected_xy[block.thread_rank()] = points_xy_image[coll_id];
collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id];
for (int i = 0; i < C; i++)
collected_colors[i * BLOCK_SIZE + block.thread_rank()] = colors[coll_id * C + i];
collected_depths[block.thread_rank()] = depths[coll_id];
}
block.sync();
// Iterate over Gaussians
for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++)
{
// Keep track of current Gaussian ID. Skip, if this one
// is behind the last contributor for this pixel.
contributor--;
if (contributor >= last_contributor)
continue;
// Compute blending values, as before.
const float2 xy = collected_xy[j];
const float2 d = { xy.x - pixf.x, xy.y - pixf.y };
const float4 con_o = collected_conic_opacity[j];
const float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y;
if (power > 0.0f)
continue;
const float G = exp(power);
const float alpha = min(0.99f, con_o.w * G);
if (alpha < 1.0f / 255.0f)
continue;
T = T / (1.f - alpha);
const float dchannel_dcolor = alpha * T;
const float dpixel_depth_ddepth = alpha * T;
// Propagate gradients to per-Gaussian colors and keep
// gradients w.r.t. alpha (blending factor for a Gaussian/pixel
// pair).
float dL_dopa = 0.0f;
const int global_id = collected_id[j];
for (int ch = 0; ch < C; ch++)
{
const float c = collected_colors[ch * BLOCK_SIZE + j];
// Update last color (to be used in the next iteration)
accum_rec[ch] = last_alpha * last_color[ch] + (1.f - last_alpha) * accum_rec[ch];
last_color[ch] = c;
const float dL_dchannel = dL_dpixel[ch];
dL_dopa += (c - accum_rec[ch]) * dL_dchannel;
// Update the gradients w.r.t. color of the Gaussian.
// Atomic, since this pixel is just one of potentially
// many that were affected by this Gaussian.
atomicAdd(&(dL_dcolors[global_id * C + ch]), dchannel_dcolor * dL_dchannel);
}
// Propagate gradients from pixel depth to opacity
const float c_d = collected_depths[j];
accum_depth_rec = last_alpha * last_depth + (1.f - last_alpha) * accum_depth_rec;
last_depth = c_d;
dL_dopa += (c_d - accum_depth_rec) * dL_dpixel_depth;
atomicAdd(&(dL_ddepths[global_id]), dpixel_depth_ddepth * dL_dpixel_depth);
// Propagate gradients from pixel alpha (weights_sum) to opacity
accum_alpha_rec = last_alpha + (1.f - last_alpha) * accum_alpha_rec;
dL_dopa += (1 - accum_alpha_rec) * dL_dalpha; //- (alpha - accum_alpha_rec) * dL_dalpha;
dL_dopa *= T;
// Update last alpha (to be used in the next iteration)
last_alpha = alpha;
// Account for fact that alpha also influences how much of
// the background color is added if nothing left to blend
float bg_dot_dpixel = 0;
for (int i = 0; i < C; i++)
bg_dot_dpixel += bg_color[i] * dL_dpixel[i];
dL_dopa += (-T_final / (1.f - alpha)) * bg_dot_dpixel;
// Helpful reusable temporary variables
const float dL_dG = con_o.w * dL_dopa;
const float gdx = G * d.x;
const float gdy = G * d.y;
const float dG_ddelx = -gdx * con_o.x - gdy * con_o.y;
const float dG_ddely = -gdy * con_o.z - gdx * con_o.y;
// Update gradients w.r.t. 2D mean position of the Gaussian
atomicAdd(&dL_dmean2D[global_id].x, dL_dG * dG_ddelx * ddelx_dx);
atomicAdd(&dL_dmean2D[global_id].y, dL_dG * dG_ddely * ddely_dy);
// Update gradients w.r.t. 2D covariance (2x2 matrix, symmetric)
atomicAdd(&dL_dconic2D[global_id].x, -0.5f * gdx * d.x * dL_dG);
atomicAdd(&dL_dconic2D[global_id].y, -0.5f * gdx * d.y * dL_dG);
atomicAdd(&dL_dconic2D[global_id].w, -0.5f * gdy * d.y * dL_dG);
// Update gradients w.r.t. opacity of the Gaussian
atomicAdd(&(dL_dopacity[global_id]), G * dL_dopa);
}
}
}
void BACKWARD::preprocess(
int P, int D, int M,
const float3* means3D,
const int* radii,
const float* shs,
const bool* clamped,
const glm::vec3* scales,
const glm::vec4* rotations,
const float scale_modifier,
const float* cov3Ds,
const float* viewmatrix,
const float* projmatrix,
const float focal_x, float focal_y,
const float tan_fovx, float tan_fovy,
const glm::vec3* campos,
const float3* dL_dmean2D,
const float* dL_dconic,
glm::vec3* dL_dmean3D,
float* dL_dcolor,
float* dL_ddepth,
float* dL_dcov3D,
float* dL_dsh,
glm::vec3* dL_dscale,
glm::vec4* dL_drot)
{
// Propagate gradients for the path of 2D conic matrix computation.
// Somewhat long, thus it is its own kernel rather than being part of
// "preprocess". When done, loss gradient w.r.t. 3D means has been
// modified and gradient w.r.t. 3D covariance matrix has been computed.
computeCov2DCUDA << <(P + 255) / 256, 256 >> > (
P,
means3D,
radii,
cov3Ds,
focal_x,
focal_y,
tan_fovx,
tan_fovy,
viewmatrix,
dL_dconic,
(float3*)dL_dmean3D,
dL_dcov3D);
// Propagate gradients for remaining steps: finish 3D mean gradients,
// propagate color gradients to SH (if desireD), propagate 3D covariance
// matrix gradients to scale and rotation.
preprocessCUDA<NUM_CHANNELS> << < (P + 255) / 256, 256 >> > (
P, D, M,
(float3*)means3D,
radii,
shs,
clamped,
(glm::vec3*)scales,
(glm::vec4*)rotations,
scale_modifier,
viewmatrix,
projmatrix,
campos,
(float3*)dL_dmean2D,
(glm::vec3*)dL_dmean3D,
dL_dcolor,
dL_ddepth,
dL_dcov3D,
dL_dsh,
dL_dscale,
dL_drot);
}
void BACKWARD::render(
const dim3 grid, const dim3 block,
const uint2* ranges,
const uint32_t* point_list,
int W, int H,
const float* bg_color,
const float2* means2D,
const float4* conic_opacity,
const float* colors,
const float* depths,
const float* alphas,
const uint32_t* n_contrib,
const float* dL_dpixels,
const float* dL_dpixel_depths,
const float* dL_dalphas,
float3* dL_dmean2D,
float4* dL_dconic2D,
float* dL_dopacity,
float* dL_dcolors,
float* dL_ddepths)
{
renderCUDA<NUM_CHANNELS> << <grid, block >> >(
ranges,
point_list,
W, H,
bg_color,
means2D,
conic_opacity,
colors,
depths,
alphas,
n_contrib,
dL_dpixels,
dL_dpixel_depths,
dL_dalphas,
dL_dmean2D,
dL_dconic2D,
dL_dopacity,
dL_dcolors,
dL_ddepths
);
} |