File size: 6,468 Bytes
a93901d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#define GLM_ENABLE_EXPERIMENTAL
#define GLM_FORCE_CTOR_INIT
#include <glm/gtx/dual_quaternion.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/epsilon.hpp>
#include <glm/gtx/euler_angles.hpp>
#include <glm/vector_relational.hpp>
#if GLM_HAS_TRIVIAL_QUERIES
#	include <type_traits>
#endif

int myrand()
{
	static int holdrand = 1;
	return (((holdrand = holdrand * 214013L + 2531011L) >> 16) & 0x7fff);
}

float myfrand() // returns values from -1 to 1 inclusive
{
	return float(double(myrand()) / double( 0x7ffff )) * 2.0f - 1.0f;
}

int test_dquat_type()
{
	glm::dvec3 vA;
	glm::dquat dqA, dqB;
	glm::ddualquat C(dqA, dqB);
	glm::ddualquat B(dqA);
	glm::ddualquat D(dqA, vA);
	return 0;
}

int test_scalars()
{
	float const Epsilon = 0.0001f;

	int Error(0);

	glm::quat src_q1 = glm::quat(1.0f,2.0f,3.0f,4.0f);
	glm::quat src_q2 = glm::quat(5.0f,6.0f,7.0f,8.0f);
	glm::dualquat src1(src_q1,src_q2);

	{
		glm::dualquat dst1 = src1 * 2.0f;
		glm::dualquat dst2 = 2.0f * src1;
		glm::dualquat dst3 = src1;
		dst3 *= 2.0f;
		glm::dualquat dstCmp(src_q1 * 2.0f,src_q2 * 2.0f);
		Error += glm::all(glm::epsilonEqual(dst1.real,dstCmp.real, Epsilon)) && glm::all(glm::epsilonEqual(dst1.dual,dstCmp.dual, Epsilon)) ? 0 : 1;
		Error += glm::all(glm::epsilonEqual(dst2.real,dstCmp.real, Epsilon)) && glm::all(glm::epsilonEqual(dst2.dual,dstCmp.dual, Epsilon)) ? 0 : 1;
		Error += glm::all(glm::epsilonEqual(dst3.real,dstCmp.real, Epsilon)) && glm::all(glm::epsilonEqual(dst3.dual,dstCmp.dual, Epsilon)) ? 0 : 1;
	}

	{
		glm::dualquat dst1 = src1 / 2.0f;
		glm::dualquat dst2 = src1;
		dst2 /= 2.0f;
		glm::dualquat dstCmp(src_q1 / 2.0f,src_q2 / 2.0f);
		Error += glm::all(glm::epsilonEqual(dst1.real,dstCmp.real, Epsilon)) && glm::all(glm::epsilonEqual(dst1.dual,dstCmp.dual, Epsilon)) ? 0 : 1;
		Error += glm::all(glm::epsilonEqual(dst2.real,dstCmp.real, Epsilon)) && glm::all(glm::epsilonEqual(dst2.dual,dstCmp.dual, Epsilon)) ? 0 : 1;
	}
	return Error;
}

int test_inverse() 
{
	int Error(0);

	float const Epsilon = 0.0001f;

	glm::dualquat dqid = glm::dual_quat_identity<float, glm::defaultp>();
	glm::mat4x4 mid(1.0f);

	for (int j = 0; j < 100; ++j)
	{
		glm::mat4x4 rot = glm::yawPitchRoll(myfrand() * 360.0f, myfrand() * 360.0f, myfrand() * 360.0f);
		glm::vec3 vt = glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f);

		glm::mat4x4 m = glm::translate(mid, vt) * rot;

		glm::quat qr = glm::quat_cast(m);

		glm::dualquat dq(qr);

		glm::dualquat invdq = glm::inverse(dq);

		glm::dualquat r1 = invdq * dq;
		glm::dualquat r2 = dq * invdq;

		Error += glm::all(glm::epsilonEqual(r1.real, dqid.real, Epsilon)) && glm::all(glm::epsilonEqual(r1.dual, dqid.dual, Epsilon)) ? 0 : 1;
		Error += glm::all(glm::epsilonEqual(r2.real, dqid.real, Epsilon)) && glm::all(glm::epsilonEqual(r2.dual, dqid.dual, Epsilon)) ? 0 : 1;

		// testing commutative property
		glm::dualquat r (   glm::quat( myfrand() * glm::pi<float>() * 2.0f, myfrand(), myfrand(), myfrand() ),
							glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f) );
		glm::dualquat riq = (r * invdq) * dq;
		glm::dualquat rqi = (r * dq) * invdq;

		Error += glm::all(glm::epsilonEqual(riq.real, rqi.real, Epsilon)) && glm::all(glm::epsilonEqual(riq.dual, rqi.dual, Epsilon)) ? 0 : 1;
	}

	return Error;
}

int test_mul() 
{
	int Error(0);

	float const Epsilon = 0.0001f;

	glm::mat4x4 mid(1.0f);

	for (int j = 0; j < 100; ++j)
	{
		// generate random rotations and translations and compare transformed by matrix and dualquats random points 
		glm::vec3 vt1 = glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f);
		glm::vec3 vt2 = glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f);

		glm::mat4x4 rot1 = glm::yawPitchRoll(myfrand() * 360.0f, myfrand() * 360.0f, myfrand() * 360.0f);
		glm::mat4x4 rot2 = glm::yawPitchRoll(myfrand() * 360.0f, myfrand() * 360.0f, myfrand() * 360.0f);
		glm::mat4x4 m1 = glm::translate(mid, vt1) * rot1;
		glm::mat4x4 m2 = glm::translate(mid, vt2) * rot2;
		glm::mat4x4 m3 = m2 * m1;
		glm::mat4x4 m4 = m1 * m2;

		glm::quat qrot1 = glm::quat_cast(rot1);
		glm::quat qrot2 = glm::quat_cast(rot2);

		glm::dualquat dq1 = glm::dualquat(qrot1,vt1);
		glm::dualquat dq2 = glm::dualquat(qrot2,vt2);
		glm::dualquat dq3 = dq2 * dq1;
		glm::dualquat dq4 = dq1 * dq2;

		for (int i = 0; i < 100; ++i)
		{
			glm::vec4 src_pt = glm::vec4(myfrand() * 4.0f, myfrand() * 5.0f, myfrand() * 3.0f,1.0f);
			// test both multiplication orders        
			glm::vec4 dst_pt_m3  = m3 * src_pt; 
			glm::vec4 dst_pt_dq3 = dq3 * src_pt;

			glm::vec4 dst_pt_m3_i  = glm::inverse(m3) * src_pt;
			glm::vec4 dst_pt_dq3_i = src_pt * dq3;

			glm::vec4 dst_pt_m4  = m4 * src_pt;
			glm::vec4 dst_pt_dq4 = dq4 * src_pt;

			glm::vec4 dst_pt_m4_i  = glm::inverse(m4) * src_pt;
			glm::vec4 dst_pt_dq4_i = src_pt * dq4;

			Error += glm::all(glm::epsilonEqual(dst_pt_m3, dst_pt_dq3, Epsilon)) ? 0 : 1;
			Error += glm::all(glm::epsilonEqual(dst_pt_m4, dst_pt_dq4, Epsilon)) ? 0 : 1;
			Error += glm::all(glm::epsilonEqual(dst_pt_m3_i, dst_pt_dq3_i, Epsilon)) ? 0 : 1;
			Error += glm::all(glm::epsilonEqual(dst_pt_m4_i, dst_pt_dq4_i, Epsilon)) ? 0 : 1;
		}
	} 

	return Error;
}

int test_dual_quat_ctr()
{
	int Error(0);

#	if GLM_HAS_TRIVIAL_QUERIES
	//	Error += std::is_trivially_default_constructible<glm::dualquat>::value ? 0 : 1;
	//	Error += std::is_trivially_default_constructible<glm::ddualquat>::value ? 0 : 1;
	//	Error += std::is_trivially_copy_assignable<glm::dualquat>::value ? 0 : 1;
	//	Error += std::is_trivially_copy_assignable<glm::ddualquat>::value ? 0 : 1;
		Error += std::is_trivially_copyable<glm::dualquat>::value ? 0 : 1;
		Error += std::is_trivially_copyable<glm::ddualquat>::value ? 0 : 1;

		Error += std::is_copy_constructible<glm::dualquat>::value ? 0 : 1;
		Error += std::is_copy_constructible<glm::ddualquat>::value ? 0 : 1;
#	endif

	return Error;
}

int test_size()
{
	int Error = 0;

	Error += 32 == sizeof(glm::dualquat) ? 0 : 1;
	Error += 64 == sizeof(glm::ddualquat) ? 0 : 1;
	Error += glm::dualquat().length() == 2 ? 0 : 1;
	Error += glm::ddualquat().length() == 2 ? 0 : 1;
	Error += glm::dualquat::length() == 2 ? 0 : 1;
	Error += glm::ddualquat::length() == 2 ? 0 : 1;

	return Error;
}

int main()
{
	int Error = 0;

	Error += test_dual_quat_ctr();
	Error += test_dquat_type();
	Error += test_scalars();
	Error += test_inverse();
	Error += test_mul();
	Error += test_size();

	return Error;
}