Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import kiui | |
from kiui.lpips import LPIPS | |
from core.unet import UNet | |
from core.options import Options | |
from core.gs import GaussianRenderer | |
class LGM(nn.Module): | |
def __init__( | |
self, | |
opt: Options, | |
): | |
super().__init__() | |
self.opt = opt | |
# unet | |
self.unet = UNet( | |
9, 14, | |
down_channels=self.opt.down_channels, | |
down_attention=self.opt.down_attention, | |
mid_attention=self.opt.mid_attention, | |
up_channels=self.opt.up_channels, | |
up_attention=self.opt.up_attention, | |
) | |
# last conv | |
self.conv = nn.Conv2d(14, 14, kernel_size=1) # NOTE: maybe remove it if train again | |
# Gaussian Renderer | |
self.gs = GaussianRenderer(opt) | |
# activations... | |
self.pos_act = lambda x: x.clamp(-1, 1) | |
self.scale_act = lambda x: 0.1 * F.softplus(x) | |
self.opacity_act = lambda x: torch.sigmoid(x) | |
self.rot_act = F.normalize | |
self.rgb_act = lambda x: 0.5 * torch.tanh(x) + 0.5 # NOTE: may use sigmoid if train again | |
# LPIPS loss | |
if self.opt.lambda_lpips > 0: | |
self.lpips_loss = LPIPS(net='vgg') | |
self.lpips_loss.requires_grad_(False) | |
def state_dict(self, **kwargs): | |
# remove lpips_loss | |
state_dict = super().state_dict(**kwargs) | |
for k in list(state_dict.keys()): | |
if 'lpips_loss' in k: | |
del state_dict[k] | |
return state_dict | |
def prepare_default_rays(self, device, elevation=0): | |
from kiui.cam import orbit_camera | |
from core.utils import get_rays | |
cam_poses = np.stack([ | |
orbit_camera(elevation, 0, radius=self.opt.cam_radius), | |
orbit_camera(elevation, 90, radius=self.opt.cam_radius), | |
orbit_camera(elevation, 180, radius=self.opt.cam_radius), | |
orbit_camera(elevation, 270, radius=self.opt.cam_radius), | |
], axis=0) # [4, 4, 4] | |
cam_poses = torch.from_numpy(cam_poses) | |
rays_embeddings = [] | |
for i in range(cam_poses.shape[0]): | |
rays_o, rays_d = get_rays(cam_poses[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3] | |
rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6] | |
rays_embeddings.append(rays_plucker) | |
## visualize rays for plotting figure | |
# kiui.vis.plot_image(rays_d * 0.5 + 0.5, save=True) | |
rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous().to(device) # [V, 6, h, w] | |
return rays_embeddings | |
def forward_gaussians(self, images): | |
# images: [B, 4, 9, H, W] | |
# return: Gaussians: [B, dim_t] | |
B, V, C, H, W = images.shape | |
images = images.view(B*V, C, H, W) | |
x = self.unet(images) # [B*4, 14, h, w] | |
x = self.conv(x) # [B*4, 14, h, w] | |
x = x.reshape(B, 4, 14, self.opt.splat_size, self.opt.splat_size) | |
## visualize multi-view gaussian features for plotting figure | |
# tmp_alpha = self.opacity_act(x[0, :, 3:4]) | |
# tmp_img_rgb = self.rgb_act(x[0, :, 11:]) * tmp_alpha + (1 - tmp_alpha) | |
# tmp_img_pos = self.pos_act(x[0, :, 0:3]) * 0.5 + 0.5 | |
# kiui.vis.plot_image(tmp_img_rgb, save=True) | |
# kiui.vis.plot_image(tmp_img_pos, save=True) | |
x = x.permute(0, 1, 3, 4, 2).reshape(B, -1, 14) | |
pos = self.pos_act(x[..., 0:3]) # [B, N, 3] | |
opacity = self.opacity_act(x[..., 3:4]) | |
scale = self.scale_act(x[..., 4:7]) | |
rotation = self.rot_act(x[..., 7:11]) | |
rgbs = self.rgb_act(x[..., 11:]) | |
gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1) # [B, N, 14] | |
return gaussians | |
def forward(self, data, step_ratio=1): | |
# data: output of the dataloader | |
# return: loss | |
results = {} | |
loss = 0 | |
images = data['input'] # [B, 4, 9, h, W], input features | |
# use the first view to predict gaussians | |
gaussians = self.forward_gaussians(images) # [B, N, 14] | |
results['gaussians'] = gaussians | |
# random bg for training | |
if self.training: | |
bg_color = torch.rand(3, dtype=torch.float32, device=gaussians.device) | |
else: | |
bg_color = torch.ones(3, dtype=torch.float32, device=gaussians.device) | |
# use the other views for rendering and supervision | |
results = self.gs.render(gaussians, data['cam_view'], data['cam_view_proj'], data['cam_pos'], bg_color=bg_color) | |
pred_images = results['image'] # [B, V, C, output_size, output_size] | |
pred_alphas = results['alpha'] # [B, V, 1, output_size, output_size] | |
results['images_pred'] = pred_images | |
results['alphas_pred'] = pred_alphas | |
gt_images = data['images_output'] # [B, V, 3, output_size, output_size], ground-truth novel views | |
gt_masks = data['masks_output'] # [B, V, 1, output_size, output_size], ground-truth masks | |
gt_images = gt_images * gt_masks + bg_color.view(1, 1, 3, 1, 1) * (1 - gt_masks) | |
loss_mse = F.mse_loss(pred_images, gt_images) + F.mse_loss(pred_alphas, gt_masks) | |
loss = loss + loss_mse | |
if self.opt.lambda_lpips > 0: | |
loss_lpips = self.lpips_loss( | |
# gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, | |
# pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, | |
# downsampled to at most 256 to reduce memory cost | |
F.interpolate(gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False), | |
F.interpolate(pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False), | |
).mean() | |
results['loss_lpips'] = loss_lpips | |
loss = loss + self.opt.lambda_lpips * loss_lpips | |
results['loss'] = loss | |
# metric | |
with torch.no_grad(): | |
psnr = -10 * torch.log10(torch.mean((pred_images.detach() - gt_images) ** 2)) | |
results['psnr'] = psnr | |
return results |